PSS9012 series
20 V PNP general purpose transistors

Product specification
Supersedes data of 2003 May 15

2004 Aug 10
20 V PNP general purpose transistors

FEATURES
- High power dissipation: 710 mW
- Low collector capacitance
- Low collector-emitter saturation voltage
- High current capability.

APPLICATIONS
- General purpose switching and amplification.

DESCRIPTION
PNP general purpose transistor in a SOT54 (TO-92) leaded plastic package. NPN complement: PSS9013 series.

MARKING

<table>
<thead>
<tr>
<th>TYPE NUMBER</th>
<th>MARKING CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSS9012G</td>
<td>S9012G</td>
</tr>
<tr>
<td>PSS9012H</td>
<td>S9012H</td>
</tr>
</tbody>
</table>

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CEO}</td>
<td>collector-emitter voltage</td>
<td>−20</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>collector current (DC)</td>
<td>−500</td>
<td>mA</td>
</tr>
<tr>
<td>I_{CM}</td>
<td>peak collector current</td>
<td>−1</td>
<td>A</td>
</tr>
</tbody>
</table>

PINNING

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>collector</td>
</tr>
<tr>
<td>2</td>
<td>base</td>
</tr>
<tr>
<td>3</td>
<td>emitter</td>
</tr>
</tbody>
</table>

LIMITING VALUES
In accordance with the Absolute Maximum System (IEC 60134).

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CBO}</td>
<td>collector-base voltage</td>
<td>open emitter</td>
<td>−</td>
<td>−40</td>
<td>V</td>
</tr>
<tr>
<td>V_{CEO}</td>
<td>collector-emitter voltage</td>
<td>open base</td>
<td>−</td>
<td>−20</td>
<td>V</td>
</tr>
<tr>
<td>V_{EBO}</td>
<td>emitter-base voltage</td>
<td>open collector</td>
<td>−</td>
<td>−5</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>collector current (DC)</td>
<td>−500</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CM}</td>
<td>peak collector current</td>
<td>−1</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{BM}</td>
<td>peak base current</td>
<td>−100</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{tot}</td>
<td>total power dissipation</td>
<td>T_{amb} ≤ 25 °C; note 1</td>
<td>−</td>
<td>710</td>
<td>mW</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>storage temperature</td>
<td>−65</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_J</td>
<td>junction temperature</td>
<td>−150</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{amb}</td>
<td>operating ambient temperature</td>
<td>−65</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Note
1. Device mounted on a FR4 printed-circuit board, single-sided copper, tinplated and standard footprint.
THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{th,j-a}$</td>
<td>thermal resistance from junction to ambient</td>
<td>in free air; note 1</td>
<td>175</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Note

1. Device mounted on a FR4 printed-circuit board, single-sided copper, tinplated and standard footprint.

CHARACTERISTICS

$T_{amb} = 25 \, ^\circ C$ unless otherwise specified.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{CBO}</td>
<td>collector-base cut-off current</td>
<td>$V_{CB} = -35 , V; I_E = 0$</td>
<td>–</td>
<td>–</td>
<td>–100</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CB} = -35 , V; I_E = 0; T_j = 150 , ^\circ C$</td>
<td>–</td>
<td>–</td>
<td>–50</td>
<td>µA</td>
</tr>
<tr>
<td>I_{EBO}</td>
<td>emitter-base cut-off current</td>
<td>$V_{EB} = -5 , V; I_C = 0$</td>
<td>–</td>
<td>–</td>
<td>–100</td>
<td>nA</td>
</tr>
<tr>
<td>h_{FE}</td>
<td>DC current gain</td>
<td>$V_{CE} = -1 , V; I_C = -500 , mA$</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CE} = -1 , V; I_C = -50 , mA$</td>
<td>112</td>
<td>144</td>
<td>166</td>
<td>202</td>
</tr>
<tr>
<td>V_{CEsat}</td>
<td>collector-emitter saturation voltage</td>
<td>$I_C = -100 , mA; I_B = -10 , mA$</td>
<td>–</td>
<td>–60</td>
<td>–250</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_C = -500 , mA; I_B = -50 , mA$</td>
<td>–</td>
<td>–230</td>
<td>–600</td>
<td>mV</td>
</tr>
<tr>
<td>V_{BEsat}</td>
<td>base-emitter saturation voltage</td>
<td>$I_C = -500 , mA; I_B = -50 , mA$</td>
<td>–</td>
<td>–1</td>
<td>–1.2</td>
<td>V</td>
</tr>
<tr>
<td>V_{BEon}</td>
<td>base-emitter turn on voltage</td>
<td>$V_{CE} = -1 , V; I_C = -100mA$</td>
<td>–</td>
<td>–760</td>
<td>–1000</td>
<td>mV</td>
</tr>
<tr>
<td>C_c</td>
<td>collector capacitance</td>
<td>$V_{CB} = -6 , V; I_E = I_e = 0$</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>pF</td>
</tr>
</tbody>
</table>
20 V PNP general purpose transistors

Fig. 2 Transition frequency as a function of collector current; typical values.

\(V_{CE} = -6 \, \text{V} \).

Fig. 3 Collector current as a function of collector-emitter voltage; typical values.

(1) \(I_B = -140 \, \mu\text{A} \).
(2) \(I_B = -120 \, \mu\text{A} \).
(3) \(I_B = -100 \, \mu\text{A} \).
(4) \(I_B = -80 \, \mu\text{A} \).
(5) \(I_B = -60 \, \mu\text{A} \).
(6) \(I_B = -40 \, \mu\text{A} \).
(7) \(I_B = -20 \, \mu\text{A} \).

Fig. 4 DC current gain as a function of collector current; typical values.

\(V_{CE} = -1 \, \text{V} \).
(1) \(T_{\text{amb}} = 100 \, ^\circ \text{C} \).
(2) \(T_{\text{amb}} = 25 \, ^\circ \text{C} \).
(3) \(T_{\text{amb}} = -55 \, ^\circ \text{C} \).

Fig. 5 DC current gain as a function of collector current; typical values.

\(V_{CE} = -2 \, \text{V} \).
(1) \(T_{\text{amb}} = 100 \, ^\circ \text{C} \).
(2) \(T_{\text{amb}} = 25 \, ^\circ \text{C} \).
(3) \(T_{\text{amb}} = -55 \, ^\circ \text{C} \).
Philips Semiconductors

Product specification

20 V PNP general purpose transistors

PSS9012 series

Fig. 6 Collector-emitter saturation voltage as a function of collector current; typical values.

- $I_C/I_B = 10$.
- (1) $T_{amb} = 100 \, ^\circ C$.
- (2) $T_{amb} = 25 \, ^\circ C$.
- (3) $T_{amb} = -55 \, ^\circ C$.

Fig. 7 Collector-emitter saturation voltage as a function of collector current; typical values.

- $I_C/I_B = 20$.
- (1) $T_{amb} = 100 \, ^\circ C$.
- (2) $T_{amb} = 25 \, ^\circ C$.
- (3) $T_{amb} = -55 \, ^\circ C$.

Fig. 8 Collector-emitter equivalent on-resistance as a function of collector current; typical values.

- $I_C/I_B = 10$.
- (1) $T_{amb} = 100 \, ^\circ C$.
- (2) $T_{amb} = 25 \, ^\circ C$.
- (3) $T_{amb} = -55 \, ^\circ C$.

Fig. 9 Collector-emitter equivalent on-resistance as a function of collector current; typical values.

- $I_C/I_B = 20$.
- (1) $T_{amb} = 25 \, ^\circ C$.
- (2) $T_{amb} = 100 \, ^\circ C$.
- (3) $T_{amb} = -55 \, ^\circ C$.
Fig. 10 Base-emitter saturation voltage as a function of collector current; typical values.

- $V_{BE_{sat}}$ vs. I_C for $I_C/I_B = 10$.
 - $T_{amb} = -55 \degree C$.
 - $T_{amb} = 25 \degree C$.
 - $T_{amb} = 100 \degree C$.

Fig. 11 Base-emitter saturation voltage as a function of collector current; typical values.

- $V_{BE_{sat}}$ vs. I_C for $I_C/I_B = 20$.
 - $T_{amb} = -55 \degree C$.
 - $T_{amb} = 25 \degree C$.
 - $T_{amb} = 100 \degree C$.

Fig. 12 Base-emitter voltage as a function of collector current; typical values.

- V_{BE} vs. I_C for $V_{CE} = -1 V$.
 - $T_{amb} = -55 \degree C$.
 - $T_{amb} = 25 \degree C$.
 - $T_{amb} = 100 \degree C$.

Fig. 13 Base-emitter voltage as a function of collector current; typical values.

- V_{BE} vs. I_C for $V_{CE} = -2 V$.
 - $T_{amb} = -55 \degree C$.
 - $T_{amb} = 25 \degree C$.
 - $T_{amb} = 100 \degree C$.
20 V PNP general purpose transistors

PSS9012 series

PACKAGE OUTLINE

Plastic single-ended leaded (through hole) package; 3 leads

SOT54

DIMENSIONS (mm are the original dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A</th>
<th>b</th>
<th>b₁</th>
<th>c</th>
<th>D</th>
<th>d</th>
<th>E</th>
<th>e₁</th>
<th>L</th>
<th>L₁ max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>5.2</td>
<td>5.0</td>
<td>0.46</td>
<td>0.66</td>
<td>0.45</td>
<td>4.8</td>
<td>1.7</td>
<td>4.2</td>
<td>2.54</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Note
1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

OUTLINE VERSION

REFERENCES

IEC JEDEC JEITA

SOT54 TO-92 SC-43A

EUROPEAN PROJECTION

ISSUE DATE

07-02-28
04-06-28

2004 Aug 10
DATA SHEET STATUS

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>DATA SHEET STATUS(^{(1)})</th>
<th>PRODUCT STATUS(^{2(3)})</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Objective data Development</td>
<td>This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Preliminary data Qualification</td>
<td>This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Product data Production</td>
<td>This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).</td>
<td></td>
</tr>
</tbody>
</table>

Notes
1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.
This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.