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Chapter 10  Transmission of Digital 

Information via Carrier Modulation (I) 
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 The transmitted signal waveforms of quadrature amplitude 

modulation (QAM) signals have the form 

 

    where {Amc} and {Ams} are the sets of amplitude levels that 

are obtained by mapping k-bit sequences into signal 

amplitudes. (Amc,Ams) is the coordinate of a constellation point 

 Note the in-phase component                             and the 

quadrature component                             of u(t) are mutually 

orthogonal in the inner-product space defined by  
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 In general, rectangular signal constellations result when two 

quadrature carriers are each modulated by PAM 

 Fig. 10.18 illustrate a 16-QAM signal constellation that is 

obtained by amplitude modulating each quadrature carrier by 

M=4 PAM 
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 Fig. 10.19 illustrates the modulator for QAM 

implementation 
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 QAM may be viewed as a form of combined digital-

amplitude and digital-phase modulation. Thus, the 

transmitted QAM signal waveforms may be expressed as 

 

 Let Rb denote the transmission bit rate. If M1=2k1 and M2=2k2, 

the combined amplitude- and phase-modulation method 

results in the simultaneous transmission of k1+k2=log2M1M2 

bits occurring at a symbol rate Rb/(k1+k2) 
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 It is clear that the geometric signal representation of u(t) is in 

the form of two-dimensional signal vectors 

                       sm=(   Es Amc,   Es Ams), m=1,2,…,M 

    and the orthogonal basis functions as  

 

                                   Es 

 

                                   Es 

 Es  is not necessarily equal to the average symbol energy Eav; 

however, it does when the average length of signal vectors 

(Amc,Ams), m=1,2,…,M,  is normalized 
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 It should be noted that M=4 rectangular QAM and M=4 PSK 

have identical signal constellations. Examples of signal-space 

constellations for QAM are shown in Fig. 10.20(a) 
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 Examples of combined PAM-PSK signal-space constellations 

are shown in Fig. 10.20(b) and Fig. 10.20(c) 
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 The average symbol energy for those signal constellations is 

simply the sum of the average energies in the quadrature 

carriers 

 The average energy per symbol is given as 

                             Eav                sm 

     The notation          denotes squared Eulidean distance  

 The distance between any pair of signal points is 

                                                               sm    sn 
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 The received signal r(t) corrupted by additive Gaussian noise 

can be expressed as 

 

 Suppose that an estimate     of the carrier phase is available at 

the demodulator. Then, the received signal may be correlated 

with the two basis functions 

                             Es 
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 Define y=(y1,y2). The optimum detector computes the 

distance metrics   

                                 D(y,sm)=   y-sm 

    and selects the signal corresponding to the smallest value of 

D(y,sm). If a correlation metric is used in place of a distance 

metric, it is important to recognize that correlation metrics 

must employ bias correction (i.e.,  sm   ) because the QAM 

signals are not equal energy 
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 We consider two QAM signal sets. The first is a four-phase 

modulated signal and the second is a QAM signal with two 

amplitude levels. For the four-phase signal with 

(Amc,Ams)=(           ), we have 

                           Eav=           Es=2Es 

 We impose the condition that dmin=2   Es 
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 For the two-amplitude, four-phase QAM, the average energy 

is 

                           Eav=           Es       Es            Es, 

    which is the same average energy as the M=4-phase signal 

constellation. Here    Es  acts as a scaling factor for 

transforming constellation coordinate into average symbol 

energy 

 Next, consider M=8 QAM. In this case, there are many 

possible signal constellations. The four signal constellations 

shown in Fig. 10.24 consist of two amplitudes and have a 

minimum distance between signal points of 2  Es 
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 Assuming that the constellation points are equally probable, 

the average transmitted signal energy is 

                         Eav=Es 

 The two signal sets (a) and (c) contain signal points that have 

Eav=6Es. The signal set (b) requires an average transmitted 

signal Eav=6.82Es, and the signal set (d) requires Eav=4.73Es 

 The signal constellation (d) is the best eight-point QAM 

constellation among the four cases because it requires the 

least energy for a given minimum distance between signal 

points 
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 For M≧16, there are many more possibilities for selecting 

the QAM signal points in the two-dimensional space. An 

example 16-point QAM signal constellation is shown in Fig. 

10.25. However, this is not the best 16-QAM for the AWGN 

channel 
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 Rectangular QAM signal constellations have the distinct 

advantage of being easily generated as two PAM signals 

impressed on phase-quadrature carriers. They are easily 

demodulated as previously described 

 Although they are not the best M-ary QAM signal 

constellations for M≧16, the average transmitted energy 

required to achieve a given minimum distance is only slightly 

greater than the average energy required for the best M-ary 

QAM signal constellation. For these reasons, rectangular M-

ary QAM signals are most frequently used in practice 
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 If we employ the optimum detector that bases its decisions 

on the optimum distance metrics, it can be shown that the 

symbol error probability is tightly upper-bounded as 

                                                  Ebav                                                 (10.3.20) 

 

    for k≧1, where Ebav/N0 is the average SNR/bit. Note we 

have Ebav=Eav/k 

 The probability of a symbol error is plotted in Fig. 10.26 as a 

function of the average SNR/bit 
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