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Chapter 8  Digital Modulation in an 

Additive White Gaussian Noise Baseband 

Channel (V) 
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 The received vector y consists of two vectors. The first vector 

is sm; the second vector is n 
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 We wish to design a signal detector that makes a decision on 

the transmitted signal in each signal interval based on the 

observation of the vector y in each interval, such that the 

probability of a correct decision is maximized 

 We consider a decision rule based on the computation of the 

posterior probabilities defined as 

              P(signal sm was transmitted|y),  m=1,2,…,M, 

    which we abbreviate as P(sm|y) 

 The decision criterion is based on selecting the signal 

corresponding to the maximum of the set of posterior 

probabilities {P(sm|y)}. We show this criterion maximizes 

the probability of a correct decision at the end of this section 



The Optimum Detector (3/12) 

4 

 It is clear that in the absence of any received information y, 

the best decision is to choose the signal sm that has the highest 

prior probability P(sm) 

 After receiving the information y, the prior probabilities P(sm) 

are replaced with the posterior (conditional) probabilities 

P(sm|y), and the receiver chooses the sm that maximizes 

P(sm|y). This decision criterion is called the maximum a 

posteriori probability (MAP) criterion 

 We express the posterior probabilities as 

                           P(sm|y)=f(y|sm)P(sm)/f(y),             (8.4.49) 

     where f(y|sm) is the conditional PDF of the observed vector 

given sm            
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 The denominator of Eq. (8.4.49) may be expressed as                    

                           f(y)=      f(y|sm)P(sm)                 (8.4.50) 

 From Eqs. (8.4.49) and (8.4.50), we observe that the 

computation of the posterior probabilities P(sm|y) requires 

knowledge of the a priori probabilities P(sm) and the 

conditional PDF’s f(y|sm) for m=1,2,…,M. Note f(y) is 

irrelevant with m  

 When the M signals are equally probable a priori, i.e., 

P(sm)=1/M for all M, the decision rule based on finding the 

signal that maximizes P(sm|y) is equivalent to finding the 

signal that maximizes f(y|sm) 
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 The PDF f(y|sm), or any monotonic function of it, is usually 

called the likelihood function. The decision criterion based 

on the maximum of  f(y|sm) over the M signals is called the 

maximum-likelihood (ML) criterion 

 A detector based on the MAP criterion and one that is based 

on the ML criterion make the same decisions, as long as the a 

priori probabilities P(sm) are all equal 

 We may work with the natural logarithm of f(y|sm), which is 

a monotonic function. Thus,  

                    ln f(y|sm)=  
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 The maximum of ln f(y|sm) over sm is equivalent to finding 

the signal sm that minimize the Euclidean distance 

                      D(y,sm)= 

 For the AWGN channel, the decision rule based on ML 

criterion reduce to finding the signal sm that is closest in 

distance to the received signal vector y. We refer to this 

decision rule as minimum distance detection 

 Expanding D(y,sm), we have 

                  D(y,sm)= 

                               =|y|2-2y．sm+|sm|2, m=1,2,…,M 
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 The term |y|2 is common to all decision metrics; hence, it 

may be ignored. Thus, the detection problem is transferred to 

maximize the metric 

                    D’(y,sm)=-2y．sm+|sm|2, m=1,2,…,M 

 Note the posterior probability metrics is 

                          PM(y,sm)=f(y|sm)P(sm)    

 Example 8.4.7. Consider the case of binary PAM signals in 

which the two possible signal points are s1=-s2=  Eb , where 

Eb is the energy per bit. The prior probabilities are P(s1) and 

P(s2). Determine the optimum MAP detector when the 

transmitted signal is corrupted with AWGN 
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 Example 8.4.7. (Cont’d) The received signal vector (which 

is one dimensional) for binary PAM is 

                                 y= ±  Eb +n, 

    where n is a zero-mean Gaussian random variable with a 

variance σn
2=N0/2. 

 The conditional PDF’s f(y|sm) for the two signals are 

                                                        Eb 

    and  
                                                          Eb 
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 Example 8.4.7. (Cont’d) The posterior probability metrics 

are 

                              PM(y,s1)=f(y|s1)P(s1) 

    and 

                             PM(y,s2)=f(y|s2)P(s2) 

 If PM(y,s1)>PM(y,s2), we select s1 as the transmitted signal; 

otherwise, we select s2. Or, alternatively, if                 , we 

select s1 

 But 
                                                                           Eb                             Eb
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 Example 8.4.7. (Cont’d) Thus, we have 

                             Eb        Eb 

 

 

    or, equivalently, 

 

                                   Eb 

 This is the final form for the optimum detector. We note that 

this is exactly the same detection rule obtained for binary 

antipodal signal with minimum bit error probability 

 In the case of unequal prior probabilities, it is also necessary 

to know N0 and Eb. The threshold is zero if equally probable 
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 We want to show that the MAP criterion is optimal in 

another way 

 Let us denote by Rm the correct region in the N-dimensional 

space for which the signal sm(t) was transmitted and the 

vector y=(y1,y2,…,yN) is received 

 The probability of a decision error given that sm(t) was 

transmitted is 

                                 sm              y|sm    y, 

    where Rm
c is the complement of Rm 
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 The average probability of error is 

                                     sm         sm 

                                                sm           y|sm    y 

                                     sm                y|sm      y 

                                              sm      y|sm       y              (*) 

 For the MAP criterion, when the M signals  are not equally 

probable, the average probability of error is 

                                                  sm|y         y    y  

 Eq. (*) is a minimum when the points that are to be included 

in each particular region Rm are those with largest posterior 

probabilities 
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 Recall that binary PAM signals are antipodal signals. The 

probability of error of the optimum detector for equally 

probable binary PAM signals is 

                                                 Eb 

 

    where Q(x) is Gaussian Q-function, Eb is the signal energy 

per bit, and N0/2, is the power spectral density of the 

AWGN 

 Note 2Eb/N0  is the output SNR from the matched filter (and 

correlation-type) demodulator 

 Eb/N0 is usually called the signal-to-noise ratio per bit or 

SNR/bit 
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 The probability of error may be expressed in terms of the 

distance between the two signals s1 and s2. From Fig. 8.7, we 

observe that the two signals are separated by the distance 

d12=2  Eb  

 Substituting Eb=d12
2/4 into Eq. (8.5.1), we obtain 

 

    This expression illustrates the dependence of the error 

probability on the distance between the two signal points 
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 In the case of M-ary PAM, the input to the detector is 

                                    y=sm+n 

    where sm denotes the mth transmitted amplitude level, and n 

is a Gaussian random variable with zero mean and variance  

σn
2=N0/2 

 A decision is made in favor of the amplitude level that is 

closest to y 
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 On the basis that all amplitude levels are equally likely a priori, 

the average probability of a symbol error is simply the 

probability that the noise variable n exceeds in magnitude one-

half of the distance between levels 

 However, when either one of the two most outer levels ±(M-1) 

is transmitted, an error can occur in one direction only. Thus, 

we have 

 

 

 

 

    where 2d is the distance between adjacent signal points 
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 Recall that the average energy per symbol Eav can be 

represented as 

                                  Eav=d2(M2-1)/3. 

    The average probability of error is expressed as 

                                            Eav 

    Since the average transmitted signal energy Eav=TPav, where 

Pav is the average transmitted power, PM may also be expressed 

as a function of Pav 

 Since each symbol carries k=log2M bits of information, the 

average energy per bit Ebav is given by Eav/k. PM can be 

written as 

                                                       Ebav 
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 Example 8.5.1. Using Fig. 8.45, determine (approximately) 

the SNR/bit required to achieve a symbol error probability 

of PM=10-6 for M=2, M=4, and M=8 

 From observation of Fig. 8.45, we know that the required 

SNR/bit (approximately) as follows: 

1. 10.5 dB for M=2 (1 bit/symbol) 

2. 14.8 dB for M=4 (2 bits/symbol) 

3. 19.2 dB for M=8 (3 bits/symbol) 

 For small values of M, each additional bit requires an 

increase of bit energy by a little over 4 dB  

 For large values of M, each additional bit requires an 

increase of bit energy by around 6 dB 
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 Consider the probability of error of M-ary orthogonal PPM 

signaling over an AWGN channel.  

 For equal energy orthogonal signals, the optimum detector 

selects the signal resulting in the largest cross correlation 

between the received vector y and each of the M possible 

transmitted signal vectors {sm}, i.e.,  

                  C(y,sm)=y•sm= 

 Suppose that the signal s1 is transmitted. Then the vector at 

the input to the detector is 

                           y=(  Es +n1,n2,n3,…,nN), 

    n1,n2, …,nN are zero-mean, mutually independent Gaussian    

    random variables with equal variance σn
2=N0/2 
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 Assume N=M for simplicity, thus 

                          C(y,s1)=  Es (   Es+n1); 

                          C(y,s2)=  Es n2; 

  

                          C(y,sM)=  Es nM; 

 Note the scale factor   Es  may be eliminated from the 

correlator outputs by dividing each output by   Es. The PDF 

of the first correlator output is 

                                                     Es 

    and the PDF’s of the other M-1 correlator outputs are 
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 The probability of a correct decision means the probability 

that y1 is larger than each of the other M-1 correlator outputs 

n2, n3,…,nM. This probability may be expressed as 

 

    where                                                 denotes the joint    

    probability that n2,n3,…,nM are all less than y1, conditioned  

    on any given y1 

 Since the {ym} are statistically independent, the joint 

probability factors into a product of M-1 marginal 

probabilities of the form   
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 These probabilities are identical for m=2,3,…,M; hence, the 

joint probability under consideration is 

 

    and the probability of a k-bit symbol error is 

                                    PM=1-Pc     

 Therefore,  

                                                                 Es 

 

    Since all the M signals are equally likely, the expression for   

    PM is the average probability of a symbol error 

 PM can also be represented in terms of the SNR/bit, Eb/N0, 

by replacing Es with kEb 
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 Assume orthogonal signal sets are with equal energy and the 

distance between every pair of signals is the same. If s1 is 

transmitted, there are M-1 other signals to which an error 

symbol can be made. These wrongly detected symbols are all 

with the same probability 

 The number of error patterns which are resulted from an 

error of i bits out of the k bits is     . Since all signals are the 

same distance from s1, the conditional probability of a 

symbol error with i bits in error is 
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 So the average number of bit error given a symbol error is 

 

 

 

 

 The probability of bit error given a symbol in error is 

 

    Thus, we have 
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