Chapter 8 Digital Modulation in an

 Additive White Gaussian Noise Baseband Channel (V)
The Optimum Detector (1/12)

- The received vector y consists of two vectors. The first vector is \boldsymbol{s}_{m}; the second vector is \boldsymbol{n}

Figure 8.43 Signal constellation, noise cloud and received vector for $N=3$ and $M=4$. It is assumed that s_{1} is transmitted.

The Optimum Detector (2/12)

- We wish to design a signal detector that makes a decision on the transmitted signal in each signal interval based on the observation of the vector y in each interval, such that the probability of a correct decision is maximized
- We consider a decision rule based on the computation of the posterior probabilities defined as

$$
P\left(\text { signal } s_{m} \text { was transmitted } \mid y\right), m=1,2, \ldots, M,
$$ which we abbreviate as $P\left(s_{m} \mid y\right)$

- The decision criterion is based on selecting the signal corresponding to the maximum of the set of posterior probabilities $\left\{P\left(\boldsymbol{s}_{m} \mid y\right)\right\}$. We show this criterion maximizes the probability of a correct decision at the end of this section

The Optimum Detector (3/12)

- It is clear that in the absence of any received information y, the best decision is to choose the signal s_{m} that has the highest prior probability $P\left(s_{m}\right)$
- After receiving the information y, the prior probabilities $P\left(s_{m}\right)$ are replaced with the posterior (conditional) probabilities $P\left(s_{m} \mid y\right)$, and the receiver chooses the s_{m} that maximizes $P\left(s_{m} \mid y\right)$. This decision criterion is called the maximum a posteriori probability (MAP) criterion
- We express the posterior probabilities as

$$
\begin{equation*}
P\left(s_{m} \mid y\right)=f\left(y \mid s_{m}\right) P\left(s_{m}\right) / f(y), \tag{8.4.49}
\end{equation*}
$$

where $f\left(y \mid s_{m}\right)$ is the conditional PDF of the observed vector given $\boldsymbol{s}_{\mathrm{m}}$

The Optimum Detector (4/12)

- The denominator of Eq. (8.4.49) may be expressed as

$$
\begin{equation*}
f(y)=\sum_{m=1}^{M} f\left(y \mid s_{m}\right) P\left(s_{m}\right) \tag{8.4.50}
\end{equation*}
$$

- From Eqs. (8.4.49) and (8.4.50), we observe that the computation of the posterior probabilities $P\left(s_{m} \mid y\right)$ requires knowledge of the a priori probabilities $P\left(s_{m}\right)$ and the conditional PDF's $f\left(y \mid s_{m}\right)$ for $m=1,2, \ldots, M$. Note $f(y)$ is irrelevant with m
- When the M signals are equally probable a priori, i.e., $P\left(\boldsymbol{s}_{m}\right)=1 / M$ for all M, the decision rule based on finding the signal that maximizes $P\left(s_{m} \mid y\right)$ is equivalent to finding the signal that maximizes $f\left(y \mid s_{m}\right)$

The Optimum Detector (5/12)

- The $\operatorname{PDF} f\left(y \mid \boldsymbol{s}_{m}\right)$, or any monotonic function of it, is usually called the likelihood function. The decision criterion based on the maximum of $f\left(\boldsymbol{y} \mid \boldsymbol{s}_{\mathrm{m}}\right)$ over the M signals is called the maximum-likelihood (ML) criterion
- A detector based on the MAP criterion and one that is based on the ML criterion make the same decisions, as long as the a priori probabilities $P\left(\boldsymbol{s}_{m}\right)$ are all equal
- We may work with the natural logarithm of $f\left(\boldsymbol{y} \mid \boldsymbol{s}_{m}\right)$, which is a monotonic function. Thus,

$$
\ln f\left(y \mid s_{m}\right)=\frac{-N}{2} \ln \left(\pi N_{0}\right)-\frac{1}{N_{0}} \sum_{k=1}^{N}\left(y_{k}-s_{m k}\right)^{2}
$$

The Optimum Detector (6/12)

- The maximum of $\ln f\left(y \mid s_{m}\right)$ over \boldsymbol{s}_{m} is equivalent to finding the signal s_{m} that minimize the Euclidean distance

$$
D\left(y, s_{m}\right)=\sum_{k=1}^{N}\left(y_{k}-s_{m k}\right)^{2}
$$

- For the AWGN channel, the decision rule based on ML criterion reduce to finding the signal \boldsymbol{s}_{m} that is closest in distance to the received signal vector y. We refer to this decision rule as minimum distance detection
- Expanding $D\left(y, s_{m}\right)$, we have

$$
\begin{aligned}
D\left(y, \boldsymbol{s}_{m}\right) & =\sum_{k=1}^{N} y_{k}^{2}-2 \sum_{k=1}^{N} y_{k} s_{m k}+\sum_{k=1}^{N} s_{m k}^{2} \\
& =|\boldsymbol{y}|^{2}-2 \boldsymbol{y} \cdot \boldsymbol{s}_{m}+\left|\boldsymbol{s}_{m}\right|^{2}, m=1,2, \ldots, M
\end{aligned}
$$

The Optimum Detector (7/12)

- The term $|y|^{2}$ is common to all decision metrics; hence, it may be ignored. Thus, the detection problem is transferred to maximize the metric

$$
D^{\prime}\left(y, s_{m}\right)=-2 y \cdot s_{m}+\left|s_{m}\right|^{2}, m=1,2, \ldots, M
$$

- Note the posterior probability metrics is

$$
P M\left(y, s_{m}\right)=f\left(y \mid s_{m}\right) P\left(s_{m}\right)
$$

- Example 8.4.7. Consider the case of binary PAM signals in which the two possible signal points are $s_{1}=-s_{2}=\sqrt{\varepsilon_{b}}$, where $\boldsymbol{\varepsilon}_{b}$ is the energy per bit. The prior probabilities are $P\left(s_{1}\right)$ and $P\left(s_{2}\right)$. Determine the optimum MAP detector when the transmitted signal is corrupted with AWGN

The Optimum Detector (8/12)

- Example 8.4.7. (Cont'd) The received signal vector (which is one dimensional) for binary PAM is

$$
y= \pm \sqrt{\varepsilon_{b}}+n
$$

where n is a zero-mean Gaussian random variable with a variance $\sigma_{n}^{2}=N_{0} / 2$.

- The conditional PDF's $f\left(y \mid s_{m}\right)$ for the two signals are
and

$$
f\left(y \mid s_{1}\right)=\frac{1}{\sqrt{2 \pi \sigma_{n}^{2}}} e^{-\left(y-\sqrt{\varepsilon_{b}}\right)^{2} / 2 \sigma_{n}^{2}}
$$

$$
f\left(y \mid s_{2}\right)=\frac{1}{\sqrt{2 \pi \sigma_{n}^{2}}} e^{-\left(y+\sqrt{\boldsymbol{E}_{b}}\right)^{2} / 2 \sigma_{n}^{2}}
$$

The Optimum Detector (9/12)

- Example 8.4.7. (Cont'd) The posterior probability metrics are

$$
P M\left(y, s_{1}\right)=f\left(y \mid s_{1}\right) P\left(s_{1}\right)
$$

and

$$
P M\left(y, s_{2}\right)=f\left(y \mid s_{2}\right) P\left(s_{2}\right)
$$

- If $P M\left(y, s_{1}\right)>P M\left(y, s_{2}\right)$, we select s_{1} as the transmitted signal; otherwise, we select s_{2}. Or, alternatively, if $\frac{P M\left(y, s_{1}\right)}{P M\left(y, s_{2}\right)}>1$, we select s_{1}
- But

$$
\frac{P M\left(y, s_{1}\right)}{P M\left(y, s_{2}\right)}=\frac{P\left(s_{1}\right)}{P\left(s_{2}\right)} \exp \left\{\left[\left(y+\sqrt{\boldsymbol{\varepsilon}_{b}}\right)^{2}-\left(y-\sqrt{\varepsilon_{b}}\right)^{2}\right] / 2 \sigma_{n}^{2}\right\}
$$

The Optimum Detector (10/12)

- Example 8.4.7. (Cont'd) Thus, we have

$$
\frac{\left(y+\sqrt{\boldsymbol{\varepsilon}_{b} b^{2}-\left(y-\sqrt{\boldsymbol{\varepsilon}_{b}}\right)^{2}}\right.}{2 \sigma_{n}{ }^{2}} \underset{s_{2}}{<} \ln \frac{P\left(s_{2}\right)}{P\left(s_{1}\right)},
$$

or, equivalently,

$$
y_{<s_{s}}^{s_{1}} \frac{N_{0}}{4 \sqrt{\varepsilon_{b}}} \ln \frac{P\left(s_{2}\right)}{P\left(s_{1}\right)},
$$

- This is the final form for the optimum detector. We note that this is exactly the same detection rule obtained for binary antipodal signal with minimum bit error probability
- In the case of unequal prior probabilities, it is also necessary to know N_{0} and $\boldsymbol{\varepsilon}_{b}$. The threshold is zero if equally probable

The Optimum Detector (11/12)

- We want to show that the MAP criterion is optimal in another way
- Let us denote by R_{m} the correct region in the N-dimensional space for which the signal $s_{m}(t)$ was transmitted and the vector $y=\left(y_{1}, y_{2}, \ldots, y_{N}\right)$ is received
- The probability of a decision error given that $s_{m}(t)$ was transmitted is

$$
P\left(e \mid \boldsymbol{s}_{m}\right)=\int_{R_{m}{ }^{c}} f\left(\boldsymbol{y} \mid \boldsymbol{s}_{m}\right) d \boldsymbol{y}
$$

where $R_{m}{ }^{c}$ is the complement of R_{m}

The Optimum Detector (12/12)

- The average probability of error is

$$
\begin{align*}
P_{M} & =\sum_{m=1}^{M} P\left(s_{m}\right) P\left(e \mid s_{m}\right) \\
& =\sum_{m=1}^{M} P\left(s_{m}\right) \int_{R_{k},} f\left(y \mid s_{m}\right) d y \\
& =\sum_{m=1}^{M} P\left(s_{m}\right)\left[1-\int_{R_{m}} f\left(y \mid s_{m}\right) d y\right] \\
& =1-\sum_{m=1}^{M} \int_{R_{m}} P\left(s_{m}\right) f\left(y \mid s_{m}\right) d y \tag{*}
\end{align*}
$$

- For the MAP criterion, when the M signals are not equally probable, the average probability of error is

$$
P_{M}=1-\sum_{m=1}^{M} \int_{R_{m}} P\left(s_{m} \mid y\right) f(y) d y
$$

- Eq. $\left(^{*}\right)$ is a minimum when the points that are to be included in each particular region R_{m} are those with largest posterior probabilities

Probability of Error for M-ary Pulse Amplitude Modulation (1/7)

- Recall that binary PAM signals are antipodal signals. The probability of error of the optimum detector for equally probable binary PAM signals is

$$
\begin{equation*}
P_{2}=Q\left(\sqrt{\frac{2 \boldsymbol{\varepsilon}_{b}}{N_{0}}}\right), \tag{8.5.1}
\end{equation*}
$$

where $Q(x)$ is Gaussian Q -function, $\boldsymbol{\mathcal { E }}_{b}$ is the signal energy per bit, and $N_{0} / 2$, is the power spectral density of the AWGN

- Note $2 \mathcal{E}_{b} / N_{0}$ is the output SNR from the matched filter (and correlation-type) demodulator
- \mathcal{E}_{b} / N_{0} is usually called the signal-to-noise ratio per bit or SNR/bit

Probability of Error for M-ary Pulse Amplitude Modulation (2/7)

- The probability of error may be expressed in terms of the distance between the two signals s_{1} and s_{2}. From Fig. 8.7, we observe that the two signals are separated by the distance $d_{12}=2 \sqrt{\boldsymbol{\varepsilon}_{b}}$
- Substituting $\boldsymbol{\varepsilon}_{b}=d_{12}{ }^{2} / 4$ into Eq. (8.5.1), we obtain

$$
P_{2}=Q\left(\sqrt{\frac{d_{1}{ }^{2}}{2 N_{0}}}\right) .
$$

This expression illustrates the dependence of the error probability on the distance between the two signal points

Probability of Error for M-ary Pulse Amplitude Modulation (3/7)

- In the case of M-ary PAM, the input to the detector is

$$
y=s_{m}+n
$$

where s_{m} denotes the m th transmitted amplitude level, and n is a Gaussian random variable with zero mean and variance
$\sigma_{n}{ }^{2}=N_{0} / 2$

- A decision is made in favor of the amplitude level that is closest to y

$s_{i}-$ signal point
τ_{i} - thresholds
Figure 8.44 Placement of thresholds at midpoints of successive amplitude levels.

Probability of Error for M-ary Pulse Amplitude Modulation (4/7)

- On the basis that all amplitude levels are equally likely a priori, the average probability of a symbol error is simply the probability that the noise variable n exceeds in magnitude onehalf of the distance between levels
- However, when either one of the two most outer levels $\pm(M-1)$ is transmitted, an error can occur in one direction only. Thus, we have

$$
\begin{aligned}
P_{M} & =\frac{M-1}{M} P\left(\left|y-s_{m}\right|>d\right) \\
& =\frac{M-1}{M} \frac{2}{\sqrt{\pi N_{0}}} \int_{d}^{\infty} e^{-x^{2} / N_{0}} d x \\
& =\frac{M-1}{M} \frac{2}{\sqrt{2 \pi}} \int_{\sqrt{2 d^{2} / N_{0}}}^{\infty} e^{-x^{2} / 2} d x \\
& =\frac{2(M-1)}{M} Q\left(\sqrt{2 d^{2} / N_{0}}\right),
\end{aligned}
$$

where $2 d$ is the distance between adjacent signal points

Probability of Error for M-ary Pulse Amplitude Modulation (5/7)

- Recall that the average energy per symbol $\boldsymbol{\varepsilon}_{a v}$ can be represented as

$$
\boldsymbol{\varepsilon}_{a v}=d^{2}\left(M^{2}-1\right) / 3
$$

The average probability of error is expressed as

$$
P_{M}=\frac{2(M-1)}{M} Q\left(\sqrt{6 \boldsymbol{\mathcal { E }}_{a r} /\left(M^{2}-1\right) N_{0}}\right),
$$

Since the average transmitted signal energy $\boldsymbol{\varepsilon}_{a v}=T P_{a v}$, where $P_{a v}$ is the average transmitted power, P_{M} may also be expressed as a function of $P_{a v}$

- Since each symbol carries $k=\log _{2} M$ bits of information, the average energy per bit $\boldsymbol{\mathcal { E }}_{b a v}$ is given by $\boldsymbol{\mathcal { E }}_{a v} / k . P_{M}$ can be written as

$$
P_{M}=\frac{2(M-1)}{M} Q\left(\sqrt{6\left(\log _{2} M\right) \boldsymbol{\varepsilon}_{b a v} /\left(M^{2}-1\right) N_{0}}\right),
$$

Probability of Error for M-ary Pulse Amplitude Modulation (6/7)

Figure 8.45 Probability of a symbol error for PAM.

Probability of Error for M-ary Pulse Amplitude Modulation (7/7)

- Example 8.5.1. Using Fig. 8.45, determine (approximately) the SNR/bit required to achieve a symbol error probability of $P_{M}=10^{-6}$ for $M=2, M=4$, and $M=8$
- From observation of Fig. 8.45, we know that the required SNR/bit (approximately) as follows:

1. 10.5 dB for $M=2(1 \mathrm{bit} /$ symbol $)$
2. 14.8 dB for $\mathrm{M}=4$ (2 bits/symbol)
3. 19.2 dB for $\mathrm{M}=8$ (3 bits/symbol)

- For small values of M, each additional bit requires an increase of bit energy by a little over 4 dB
- For large values of M, each additional bit requires an increase of bit energy by around 6 dB

Probability of Error for M-ary Orthogonal Signals (1/7)

- Consider the probability of error of M-ary orthogonal PPM signaling over an AWGN channel.
- For equal energy orthogonal signals, the optimum detector selects the signal resulting in the largest cross correlation between the received vector y and each of the M possible transmitted signal vectors $\left\{s_{m}\right\}$, i.e.,

$$
C\left(y, \boldsymbol{s}_{m}\right)=y \cdot \boldsymbol{s}_{m}=\sum_{k=1}^{N} y_{k} s_{m k}, \quad m=1,2, \ldots, M
$$

- Suppose that the signal s_{1} is transmitted. Then the vector at the input to the detector is

$$
y=\left(\sqrt{\varepsilon_{s}}+n_{1}, n_{2}, n_{3}, \ldots, n_{N}\right)
$$

$n_{1}, n_{2}, \ldots, n_{N}$ are zero-mean, mutually independent Gaussian random variables with equal variance $\sigma_{n}{ }^{2}=N_{0} / 2$

Probability of Error for M-ary Orthogonal Signals (2/7)

- Assume $N=M$ for simplicity, thus

$$
\begin{gathered}
C\left(y, s_{1}\right)=\sqrt{\mathcal{E}_{s}}\left(\sqrt{\mathcal{E}_{s}}+n_{1}\right) \\
C\left(y, s_{2}\right)=\sqrt{\mathcal{E}_{s}} n_{2} ; \\
\vdots \\
C\left(y, s_{M}\right)=\sqrt{\boldsymbol{\varepsilon}_{s}} n_{M}
\end{gathered}
$$

- Note the scale factor $\sqrt{\mathcal{E}_{s}}$ may be eliminated from the correlator outputs by dividing each output by $\sqrt{\mathcal{E}_{s}}$. The PDF of the first correlator output is

$$
f\left(y_{1}\right)=\frac{1}{\sqrt{\pi N_{0}}} e^{-\left(y_{1}-\sqrt{\boldsymbol{E}_{s}}\right)^{2} / N_{0}}
$$

and the PDF's of the other $M-1$ correlator outputs are

$$
f\left(y_{m}\right)=\frac{1}{\sqrt{\pi V_{0}}} e^{-y_{m}{ }^{2} / N_{0}}, \quad m=2,3, \ldots, M
$$

Probability of Error for M-ary Orthogonal Signals (3/7)

- The probability of a correct decision means the probability that y_{1} is larger than each of the other $M-1$ correlator outputs $n_{2}, n_{3}, \ldots, n_{M}$. This probability may be expressed as

$$
P_{c}=\int_{-\infty}^{\infty} P\left(n_{2}<y_{1}, n_{3}<y_{1}, \ldots, n_{M}<y_{1} \mid y_{1}\right) f\left(y_{1}\right) d y_{1},
$$

where $P\left(n_{2}<y_{1}, n_{3}<y_{1}, \ldots, n_{M}<y_{1} \mid y_{1}\right)$ denotes the joint probability that $n_{2}, n_{3}, \ldots, n_{M}$ are all less than y_{1}, conditioned on any given y_{1}

- Since the $\left\{y_{m}\right\}$ are statistically independent, the joint probability factors into a product of $M-1$ marginal probabilities of the form

$$
\begin{aligned}
P\left(n_{m}<y_{1} \mid y_{1}\right) & =\int_{-\infty}^{y_{1}} f\left(y_{m}\right) d y_{m}, \quad m=2,3, \ldots, M \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\sqrt{2 y_{1}^{2} / N_{0}}} e^{-t^{2} / 2} d t=1-Q\left(\sqrt{\frac{2 y_{1}^{2}}{N_{0}}}\right)
\end{aligned}
$$

Probability of Error for M-ary Orthogonal Signals (4/7)

- These probabilities are identical for $m=2,3, \ldots, M$; hence, the joint probability under consideration is

$$
P_{c}=\int_{-\infty}^{\infty}\left[1-Q\left(\sqrt{\frac{2 y_{1}^{2}}{N_{0}}}\right)\right]^{M-1} f\left(y_{1}\right) d y_{1}
$$

and the probability of a k-bit symbol error is

$$
P_{M}=1-P_{c}
$$

- Therefore,

$$
P_{M}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left\{1-[1-Q(x)]^{M-1}\right\} e^{-\left(x-\sqrt{2 \varepsilon_{s} / N_{0}}\right)^{2} / 2} d x
$$

Since all the M signals are equally likely, the expression for P_{M} is the average probability of a symbol error

- P_{M} can also be represented in terms of the SNR/bit, $\boldsymbol{\mathcal { E }}_{b} / N_{0}$, by replacing $\boldsymbol{\varepsilon}_{s}$ with $k \boldsymbol{\varepsilon}_{b}$

Probability of Error for M-ary Orthogonal Signals (5/7)

- Assume orthogonal signal sets are with equal energy and the distance between every pair of signals is the same. If \boldsymbol{s}_{1} is transmitted, there are $M-1$ other signals to which an error symbol can be made. These wrongly detected symbols are all with the same probability
- The number of error patterns which are resulted from an error of i bits out of the k bits is $\binom{k}{i}$. Since all signals are the same distance from s_{1}, the conditional probability of a symbol error with i bits in error is

$$
\frac{\binom{k}{i}}{M-1}
$$

Probability of Error for M-ary Orthogonal Signals (6/7)

- So the average number of bit error given a symbol error is

$$
\begin{aligned}
\sum_{i=1}^{k} i\binom{k}{i} /(M-1) & =\frac{1}{M-1} \sum_{i=1}^{k} \frac{k!}{(i-1)!(k-i)!} \\
& =\frac{1}{M-1} \sum_{i^{\prime}=0}^{k-1} \frac{k \cdot(k-1)!}{i^{\prime!}\left(k-i^{\prime}-1\right)!} \\
& =\frac{k 2^{k-1}}{M-1}
\end{aligned}
$$

- The probability of bit error given a symbol in error is

$$
\frac{1}{k} \frac{k 2^{k-1}}{M-1}=\frac{2^{k-1}}{2^{k}-1} .
$$

Thus, we have

$$
P_{b}=\frac{2^{k-1}}{2^{k}-1} P_{M} .
$$

Probability of Error for M-ary Orthogonal Signals (7/7)

