Chapter 8 Digital Modulation in an
Additive White Gaussian Noise Baseband

Channel (V)




M-ary Pulse Modulation (1/3)

® We consider the simultaneous transmission of multiple bits

by using more than two signal waveforms

® The binary information sequence is subdivided into blocks of
k bits, called symbols, and each block (or symbol) is
represented by one of M=2* signal waveforms, each of
duration T. This type of modulation is called M-ary

modulation

® The signaling (symbol) rate, R, as the number of signals (or

symbols) transmitted per second. Clearly,

R, ==
=




M-ary Pulse Modulation (2/3)

® Each signal carries k=log,M bits of information, the bit rate

is given by

R, =kR, =%
-
® The bit interval is
L1t
R, k
5 R
0 T 2Tb ka

T}, = bit intetval
T = symbol intetval

Figure 8.27 Relationship between the symbol intérval and (he bit interval,




M-ary Pulse Modulation (3/3)

® The M sional waveforms mayv be one-dimensional or multi-
8 y

dimensional

® The one-dimensional M-ary signals are a generalization of the
binary PAM (antipodal) signals. The multi-dimensional signals
are a generalization of the binary PPM (orthogonal) signals




M-ary Pulse Amplitude Modulation
(1/9)

® The k-bit symbols are used to select M=2* signal amplitudes.
The M-ary PAM signal waveforms may be expressed as
s,()=A0.(), 0<t<T, m=12,...,M
=s (), 0<t<T, m=12,...,M

* All M signal wavetorms have the same pulse shape. Hence,
they are one-dimensional signals. Note that s _ :Am\/T

g7 (t) 0]
0 — T ——1 0 — T —— Flgure 8.28 ReCtangula'r pulse gr (%)
N and basis function ¥ () for M-ary
(a) (b) PAM.
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M-ary Pulse Amplitude Modulation
(2/9)

® An important feature of these PAM signals is that they have
different energies. That is,

E,~[ s, Odt=s, [ v Ot =s," = AT
® Assuming that all k-bit symbols are equally probable, the

average energy of the transmltted 51gnals is

25——2%

¢ In order to mlmmlze the average transmitted energy and to
avoid transmitting signals with a DC component, we want to
select the M signal amplitudes to be symmetric about the
origin and equally spaced. That is,

A =(2m-1-M)A m=12,...,M




M-ary Pulse Amplitude Modulation
(3/9)

® The corresponding average energy, assuming that all k-bit

symbols are equally przlé’)_lgb'\lﬂe, is
g = Y > (2m-1-M)?
m=1

— AT(M2-1)/3
® The corresponding signal constellation point of the M -ary

PAM signals are given as
S, = Amﬁ
= AVT 2m-1-M), m=12,...,M
® [t is convenient to define the distance parameter d as d = AT,

so that
S, =(2m-1-M)d, m=12,...,.M




M-ary Pulse Amplitude Modulation
(4/9)

e The signal constellation point diagram is shown in Fig. 8.29.

The distance between two adjacent signal points is 2d

* Example 8.4.1. Sketch the signal waveforms for M=4 PAM

and determine the average transmitted signal energy.
® The average energy, based on equally probable signals, is
E =5A’T=54,
where d*=A4°T by definition

2d
& & o } o & t
—5d -3d —d 0 d 3d 5d

Figure 8.29 Signal point constellation for M-ary PAM.
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M-ary Pulse Amplitude Modulation
(5/°9)

* Example 8.4.1. (Cont'd) The four signal waveforms are
shown in Fig. 8.30

'TJU} .?1{:.?')
3A
A
0 T :r 0 T }:'
5:(1) 54(0) R
0 T ¢
0 T ;T4
—A Figure 8.30 M = 4 PAM signal waveforms.
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M-ary Orthogonal Signals (1/8)

® M-ary orthogonal signal waveforms at baseband can be
constructed in a Variety of ways. Fig. 8.31 illustrates two sets
of M=4 orthogonal signal waveforms, which are represented
as s.(t) and s, (¢), i=1,...,4

* Fig. 8.31(a) and Fig. 8.31(b) both satisty the orthogonality

condition, namely,

_[OTsi'(t)Sj'(t)dtzO, i~ |

® The number of dimensions required to represent a set of M
orthogonal waveforms is N=M. Hence, a set of M orthogonal
signal waveforms can be represented geometrically by M

orthogonal vectors in M-dimensional space




M-ary Orthogonal Signals (2/8)
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Figure 8.31

(a)

Two sets of M = 4 orthogonal signal waveforms.




M-ary Orthogonal Signals (3/8)
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Figure 8,31 Two sets of M =4 orthogonal signal waveforms.




M-ary Orthogonal Signals (4/8)

e Consider M-ary PPM signal waveforms expressed

mathematically as

s, () =E v, (1), m=12,....M,
where ¥, (1) and m=1,2,...,M are a set of M orthogonal basis
waveforms. These waveform are defined as

v, () =g, (t—570), S <t<al

in which g,(t) is a unit energy pulse, which is nonzero over

the time interval 0<t<{-




M-ary Orthogonal Signals (5/8)

® Each signal waveform s _(t) has energy

[ s dt=£ [ v, Odt=E,, all m

5S denotes the energy of each of the signal waveforms

representing k-bit symbols
® Note ¥,(t) has unit power

gT(r), dlm(t)
’\/{J'L,;T A VJ)!,IT T T T T T T T e ,-
0 TIM 0 (m—-1)T mT

M

Figure 8.32 Rectangular
pulse gy (1) and basis function
W (1) for M-ary PPM signal
waveforms.
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M-ary Orthogonal Signals (6/8)

* M-ary PPM signal waveforms are represented geometrically

by the following M-dimensional vectors
s;=(/E,.00,-,0)
SZZ(O’\/Z’O’”WO)

Sy— (O’O’O’ e A/ gs)
® These vectors are orthogonal, i.e., s, S].:O when i#;

® The M signal vectors are mutually equidistant, i.e.,

d =|s s || =,2&, for all m#n




M-ary Orthogonal Signals (7/8)

L Example 8.4.2. Determine the vectors in a geometric

representation of the /=4 signal waveforms s,’(t) and
i=1,2,3,4, that are shown in Fig. 8.31(b). Use the basis
waveforms y, (t) that are shown in Fig, 8.32

* Note that the four orthogonal wavetorms have equal energy,
given by
[ s Ordt=¢
* By computing the projection of each signal waveform on the

four basis waveforms (1), i.e.,

IOT s; (D, (Ddt, m=1,234,

we obtain the vector s’




M-ary Orthogonal Signals (8/8)

* Example 8.4.2. (Cont’d) We obtain
s)=(E/4, JE/4, JE/4, JE/4)
s, =(E/4, VE/4, —JE/4, —E/4)
s;=(E/4, —JE/A, JE/4, —|E/4)
W=ETh, ETh ETh JET

® We observe that these four signal vectors are orthogonal, i.e.,

s’ s].’:O, for i#j

° Note that |s/| = &£,i=1,2,3,4




The Optimum Demodulator for M-ary
Signals in AWGN (1/14)

e We assume that the digital communication system transmits
digital information by using any of the M -ary signal

waveforms described in the preceding sections

* Each of the M=2* symbols is associated with a corresponding
baseband signal waveform from the set {s_(¢r),m=1,2,... ,M}.
Each signal waveform is transmitted within the symbol
(signaling) interval T. We consider the transmission of

information over the interval 0=t=T

e We wish to design a receiver that is optimum in the sense

that it minimizes the probability of making an error




@

The Optimum Demodulator for M-ary
Signals in AWGN (2/14)

® The channel is assumed to corrupt the signal by the addition
of white Gaussian noise. Thus, the received signal in the
interval 0 =t = T may be expressed as

r(t)=s_(t)+n(t), 0=t=T

where n(t) denotes the sample function of the additive white
Gaussian noise (AWGN) process with the power spectral
density S (f)=N,/2

® We subdivide the receiver into two parts: the signal
demodulator and the detector. The demodulator converts the
received waveform r(¢) into an N-dimensional vector

Y=(V;,V2---,Vn), Where N is the dimension of the transmitted

signal waveform




The Optimum Demodulator for M-ary
Signals in AWGN (3/14)

® The function of the detector is to decide which of the M
possible signal waveforms was transmitted based on

observation of the vector y

® We have shown that the M-ary signal waveform, each of

which is N-dimensional, may be represented in general as
sa(0) = s, (1), 0<t<T, m=12,.,M,
where {s_,} are the coordinates of the signal vector
S (S 1,8 5yeeesS ), m=1,2 .. M,

and y, (t) and k=1,2,... N are N orthonormal basis

waveforms that span the N-dimensional signal space




The Optimum Demodulator for M-ary
Signals in AWGN (4/14)

® As a generalization of the demodulator for binary signals, we

employ either a correlation-type demodulator or a matched-
filter-type demodulator

® The correlator outputs at the end of the signal interval is
ol
v = [ T, Wt
= [ s () + Ny (et
= [ s v, dt+ [ n(Ow, e

=S, +N, k=12,..,N (8.4.34)
* Eq. (8.4.34) is equivalent to

y:sm—l—n,
a where s_and n are vectors




The Optimum Demodulator for M-ary
Signals in AWGN (5/14)

(1)

va(t)

L Orr—

g\‘\"5

—3

: R :
: g
—

~
]

T

Received
signal

r(1)

¢ To detector

()
— _ .l
1 | YV
' Sample
atr=T

Figure 8.39 Correlation-type demodulator.
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The Optimum Demodulator for M-ary
Signals in AWGN (6/14)

® We can express the received signal r(t) in the interval
O0=t=Tas

r)=>" suv(®+>. ny, [)+n(t)
= sz=1 Y, (1) +n(t)

® The term n’(t), defined as
n()=n() -2, N (),

is a zero-mean (Gaussian noise process that represents the
difference between the original noise process n(t) and the

part that corresponds to the projection of n(t) onto the basis
function {w, (t)}
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The Optimum Demodulator for M-ary
Signals in AWGN (7/14)

Note that y,=s_,+n,, k=1,2,... N. Since the signal {s _(¢)} are
deterministic, the signal components {s_,} are deterministic.

The noise components {n,} are Gaussian distributed
The mean values of {n,} are
T
ElnJ= | E®]y, (t)dt=0.

Their covariance are
T
E[nn,]=] | ElONE@y Oy, (r)ddz

ol

0

T (T N

I, 0= v, ()
N

-
=% [ v Oy, (Dt

— % 5mk !
where 5mk is the Kronecker delta. Note 5mk:1 when m=k

and will otherwise be zero

™
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The Optimum Demodulator for M-ary
Signals in AWGN (8/14)

® The N noise components {n,} are zero-mean uncorrelated
Gaussian random variables with a common variance
0 *=N,/2, and it follows that
N ni2

N _Zizl’\TO
() =TT, ()= b
® The correlator output {y,} conditioned on the mth signal

being transmitted are Gaussian random variables with mean
E[)/k]:E[Smk—l—nk] =s_,
and equal variance
0’=0_*=N,/2.
)/ n
Since the noise components {nk} are uncorrelated Gaussian

random variables they are also statistically independent

™
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The Optimum Demodulator for M-ary
Signals in AWGN (9/14)

® The conditional probability density functions (PDF’s) of the
variables (y,,y,,...,yy)=y are simply
fOs) =T fF i Ism), m=12,...M

where

f (Y lsm) =™ N0 =12 N
® We obtain the joint condltlonal PDF’s as
fr18,) = e expl T (Ve — 5 ) /N
w)wzexp[ | s /N } m=12,..M

® We can show that no additional relevant information can be

extracted from the remaining noise n’(t), i.e., E[n’(t)y,]=0




4 N
The Optimum Demodulator for M-ary

Signals in AWGN (10/14)

E[n'(8)y, 1= E[N (©)(Sy + i )]
— :n.(t)smk]+E[nl(t)nk]

= E[n (t)]sy, + E[N"(ON,]
= E[n'(O)n, ] _

=E [n(t) —i Ny, (t)jnk

N _
= E| n(t)n, _annk‘//j(t)
=1 _

_ IOT E[ntn()ly, (t)dt—ZN: E(n;n )y ; (1)

:%WK(t)_%Wk(t)

@ ~ Y




The Optimum Demodulator for M-ary
Signals in AWGN (11/14)

® Since n’(¢) and {y,} are Gaussian and uncorrelated, they are
also statistically independent. All the relevant information is

contained in the correlator output {y,}

* Example 8.4.5. Consider an M-ary PAM signal set given by
s, ()=s,w(t), 0<t<T, m=12,..,M. The basis function is
defined by w(t) = V1/T, 0<t<T.The additive noise is a zero-

mean white Gaussian noise process with spectral density
N,/ 2. Determine the PDF of the received signal at the
output of the demodulator and sketch the PDFs for the case
M=4.

® The received signal is expressed as

r(t) = 5,0 (1) + n(t)
@




The Optimum Demodulator for M-ary
Signals in AWGN (12/14)

* Example 8.4.5. (Cont'd) The output of the demodulator is
() =[] Oy @t = [ [s,0/ 0+ n Oy Oct

=S _+n,
where n is a zero-mean Gaussian random variable with
variance O'nzzNO/ 2. Therefore, the PDF of y=Yy(T) is

f(yls,)=—22-e ™™, m=12..,M

and s =(2m-1-M)d. The PDF’s for #=4 PAM are shown below
fls)

folsy  fUls2) f(ylss) F(ylsa)

Figure 8,41 PDF's for M =4

|

|

|

|
LIl B ' > >,y received PAM signals in additive
—3d —d - d 3d white Gaussian noise.
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The Optimum Demodulator for M-ary

Signals in AWGN (13/14)

* Example 8.4.6. Consider the /=4 orthogonal PPM signal
waveforms shown in Fig. 8.31(a), where the signal

constellation points {sm} are given by

$,=(/€.,0,0,0);
5,= (0,4/E.,0,0);

5,= (0,004 ).
The additive noise is zero-mean white Gaussian noise process
with a spectral density N,/ 2. Determine the PDF of the

received signal vector y at the output of the demodulator,

assuming that the signal s,(z) was transmitted




4 N
The Optimum Demodulator for M-ary

Signals in AWGN (14/14)

* Example 8.4.6. (Cont'd) The received signal vector is
y=s,tn
— (\/gg+ n;,n,, N, n4)’

where the noise components n,,n,,n;,n, are mutually
statistically independent, zero-mean Gaussian random
variables with identical variance 0 *=N,/2

® The joint PDF of the vector components y,,y,,y3, Vs 18
—[(Y1—\/g)2+Y22+Y32+y42}/No

PV Yor Yo ¥a | S1) = (7@
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