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Chapter 8  Digital Modulation in an 
Additive White Gaussian Noise Baseband 

Channel (IV)



M-ary Pulse Modulation (1/3)
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We consider the simultaneous transmission of multiple bits 
by using more than two signal waveforms

The binary information sequence is subdivided into blocks of 
k bits, called symbols, and each block (or symbol) is 
represented by one of M=2k signal waveforms, each of 
duration T. This type of modulation is called M-ary
modulation

The signaling (symbol) rate, Rs, as the number of signals (or 
symbols) transmitted per second. Clearly, 
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M-ary Pulse Modulation (2/3)
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Each signal carries k=log2M bits of information, the bit rate 
is given by

The bit interval is 
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M-ary Pulse Modulation (3/3)
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The M signal waveforms may be one-dimensional or multi-
dimensional

The one-dimensional M-ary signals are a generalization of the 
binary PAM (antipodal) signals. The multi-dimensional signals 
are a generalization of the binary PPM (orthogonal) signals



M-ary Pulse Amplitude Modulation 
(1/5)
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The k-bit symbols are used to select M=2k signal amplitudes. 
The M-ary PAM signal waveforms may be expressed as

All M signal waveforms have the same pulse shape. Hence, 
they are one-dimensional signals. Note that sm=Am T
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M-ary Pulse Amplitude Modulation 
(2/5)
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An important feature of these PAM signals is that they have 
different energies. That is,

Em

Assuming that all k-bit symbols are equally probable, the 
average energy of the transmitted signals is

Eav Em

In order to minimize the average transmitted energy and to 
avoid transmitting signals with a DC component, we want to 
select the M signal amplitudes to be symmetric about the 
origin and equally spaced. That is,
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M-ary Pulse Amplitude Modulation 
(3/5)
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The corresponding average energy, assuming that all k-bit 
symbols are equally probable, is

Eav

The corresponding signal constellation point of the M-ary
PAM signals are given as

It is convenient to define the distance parameter d as              , 
so that
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M-ary Pulse Amplitude Modulation 
(4/5)
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The signal constellation point diagram is shown in Fig. 8.29. 
The distance between two adjacent signal points is 2d

Example 8.4.1. Sketch the signal waveforms for M=4 PAM 
and determine the average transmitted signal energy.

The average energy, based on equally probable signals, is 

Eav=5A2T=5d2,

where d2=A2T by definition



M-ary Pulse Amplitude Modulation 
(5/5)
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Example 8.4.1. (Cont’d) The four signal waveforms are 
shown in Fig. 8.30



M-ary Orthogonal Signals (1/8)
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M-ary orthogonal signal waveforms at baseband can be 
constructed in a variety of ways. Fig. 8.31 illustrates two sets 
of M=4 orthogonal signal waveforms, which are represented 
as si(t) and si

’(t), i=1,…,4

Fig. 8.31(a) and Fig. 8.31(b) both satisfy the orthogonality
condition, namely, 

The number of dimensions required to represent a set of M 
orthogonal waveforms is N=M. Hence, a set of M orthogonal 
signal waveforms can be represented geometrically by M 
orthogonal vectors in M-dimensional space
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M-ary Orthogonal Signals (2/8)
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M-ary Orthogonal Signals (3/8)
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M-ary Orthogonal Signals (4/8)
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Consider M-ary PPM signal waveforms expressed 
mathematically as

Es                                              ,

where           and m=1,2,…,M are a set of M orthogonal basis 
waveforms. These waveform are defined as 

in which gT(t) is a unit energy pulse, which is nonzero over 
the time interval 
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M-ary Orthogonal Signals (5/8)
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Each signal waveform sm(t) has energy

Es Es , all m

Es denotes the energy of each of the signal waveforms 
representing k-bit symbols

Note             has unit power
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M-ary Orthogonal Signals (6/8)
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M-ary PPM signal waveforms are represented geometrically 
by the following M-dimensional vectors

s1= Es

s2= Es

sM= Es

These vectors are orthogonal, i.e., si‧sj=0 when i≠j

The M signal vectors are mutually equidistant, i.e., 

dmn=∥sm-sn∥=   2Es, for all m≠n
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M-ary Orthogonal Signals (7/8)
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Example 8.4.2. Determine the vectors in a geometric 
representation of the M=4 signal waveforms si’(t) and 
i=1,2,3,4, that are shown in Fig. 8.31(b). Use the basis 
waveforms            that are shown in Fig. 8.32

Note that the four orthogonal waveforms have equal energy, 
given by

Es

By computing the projection of each signal waveform on the 
four basis waveforms          , i.e., 

we obtain the vector si’
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M-ary Orthogonal Signals (8/8)
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Example 8.4.2. (Cont’d)We obtain

s1’=(  Es/4, Es/4, Es/4, Es/4 )

s2’=(  Es/4, Es/4, Es/4, Es/4 )

s3’=(  Es/4, Es/4, Es/4, Es/4 )

s4’=(  Es/4, Es/4, Es/4, Es/4 )

We observe that these four signal vectors are orthogonal, i.e., 
si’‧sj’=0, for i≠j

Note that   si’  2= Es, i=1,2,3,4
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The Optimum Demodulator for M-ary
Signals in AWGN (1/14) 

18

We assume that the digital communication system transmits 
digital information by using any of the M-ary signal 
waveforms described in the preceding sections

Each of the M=2k symbols is associated with a corresponding 
baseband signal waveform from the set {sm(t),m=1,2,…,M}. 
Each signal waveform is transmitted within the symbol 
(signaling) interval T. We consider the transmission of 
information over the interval 0≦t≦T

We wish to design a receiver that is optimum in the sense 
that it minimizes the probability of making an error



The Optimum Demodulator for M-ary
Signals in AWGN (2/14) 
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The channel is assumed to corrupt the signal by the addition 
of white Gaussian noise. Thus, the received signal in the 
interval 0≦t≦T may be expressed as

r(t)=sm(t)+n(t), 0≦t≦T

where n(t) denotes the sample function of the additive white 
Gaussian noise (AWGN) process with the power spectral 
density Sn(f)=N0/2

We subdivide the receiver into two parts: the signal 
demodulator and the detector. The demodulator converts the 
received waveform r(t) into an N-dimensional vector 
y=(y1,y2,…,yN), where N is the dimension of the transmitted 
signal waveform



The Optimum Demodulator for M-ary
Signals in AWGN (3/14) 
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The function of the detector is to decide which of the M 
possible signal waveforms was transmitted based on 
observation of the vector y

We have shown that the M-ary signal waveform, each of 
which is N-dimensional, may  be represented in general as

where {smk} are the coordinates of the signal vector

sm=(sm1,sm2,…,smN), m=1,2,…,M,

and           and k=1,2,…,N are N orthonormal basis 
waveforms that span the N-dimensional signal space
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The Optimum Demodulator for M-ary
Signals in AWGN (4/14) 
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As a generalization of the demodulator for binary signals, we 
employ either a correlation-type demodulator or a matched-
filter-type demodulator

The correlator outputs at the end of the signal interval is

Eq. (8.4.34) is equivalent to 

y=sm+n,

where sm and n are vectors
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The Optimum Demodulator for M-ary
Signals in AWGN (5/14) 

22



The Optimum Demodulator for M-ary
Signals in AWGN (6/14) 
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We can express the received signal r(t) in the interval 
0≦t≦T as

The term n’(t), defined as

is a zero-mean Gaussian noise process that represents the 
difference between the original noise process n(t) and the 
part that corresponds to the projection of n(t) onto the basis 
function {        } 

∑∑ ==
++=

N

k kk
N

k kmk tntntstr
1

'
1

)()()()( ψψ

)()(
1

tntyN

k kk += ∑ =
ψ

,)()()(
1

' ∑ =
−=

N

k kk tntntn ψ

)(tkψ



The Optimum Demodulator for M-ary
Signals in AWGN (7/14) 
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Note that yk=smk+nk, k=1,2,…,N. Since the signal {sm(t)} are 
deterministic, the signal components {smk} are deterministic. 
The noise components {nk} are Gaussian distributed

The mean values of {nk} are

Their covariance are

where δmk is the Kronecker delta. Note δmk=1 when m=k
and will otherwise be zero
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The Optimum Demodulator for M-ary
Signals in AWGN (8/14) 
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The N noise components {nk} are zero-mean uncorrelated 
Gaussian random variables with a common variance 
σn

2=N0/2, and it follows that

n

The correlator output {yk} conditioned on the mth signal 
being transmitted are Gaussian random variables with mean

E[yk]=E[smk+nk]=smk

and equal variance

σy
2=σn

2=N0/2.        

Since the noise components {nk} are uncorrelated Gaussian 
random variables they are also statistically independent
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The Optimum Demodulator for M-ary
Signals in AWGN (9/14) 

26

The conditional probability density functions (PDF’s) of the 
variables (y1,y2,…,yN)=y are simply

y

where 

We obtain the joint conditional PDF’s as

y|sm

y-sm

We can show that no additional relevant information can be 
extracted from the remaining noise n’(t), i.e., E[n’(t)yk]=0 
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The Optimum Demodulator for M-ary
Signals in AWGN (10/14) 
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The Optimum Demodulator for M-ary
Signals in AWGN (11/14) 
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Since n’(t) and {yk} are Gaussian and uncorrelated, they are 
also statistically independent. All the relevant information is 
contained in the correlator output {yk}

Example 8.4.5. Consider an M-ary PAM signal set given by

The basis function is 
defined by                                    The additive noise is a zero-
mean white Gaussian noise process with spectral density 
N0/2. Determine the PDF of the received signal at the 
output of the demodulator and sketch the PDFs for the case 
M=4.

The received signal is expressed as
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The Optimum Demodulator for M-ary
Signals in AWGN (12/14)
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Example 8.4.5. (Cont’d) The output of the demodulator is

where n is a zero-mean  Gaussian random variable with 
variance σn

2=N0/2. Therefore, the PDF of               is

and sm=(2m-1-M)d. The PDF’s for M=4 PAM are shown below
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The Optimum Demodulator for M-ary
Signals in AWGN (13/14)
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Example 8.4.6. Consider the M=4 orthogonal PPM signal 
waveforms shown in Fig. 8.31(a), where the signal 
constellation points {sm} are given by 

s1= Es               ;

s2= Es            ;

s4= Es   .

The additive noise is zero-mean white Gaussian noise process 
with a spectral density N0/2. Determine the PDF of the 
received signal vector y at the output of the demodulator, 
assuming that the signal s1(t) was transmitted
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The Optimum Demodulator for M-ary
Signals in AWGN (14/14)
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Example 8.4.6. (Cont’d) The received signal vector is

y=s1+n

Es

where the noise components n1,n2,n3,n4 are mutually 
statistically independent, zero-mean Gaussian random 
variables with identical variance σn

2=N0/2

The joint PDF of the vector components y1,y2,y3,y4 is

s1
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