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Chapter 8  Digital Modulation in an 

Additive White Gaussian Noise Baseband 

Channel (III) 



Correlation-Type Demodulator (1/10) 

2 

 Let us consider the two orthogonal signals given in Fig. 8.10, 

where           and           are  the orthogonal basis functions 

shown in Fig. 8.11 

 s1=(s11,0)=(  Eb     ) and s2=(0,s22)= (      Eb) 
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Correlation-Type Demodulator (2/10) 

3 

 In the presence of AWGN, the received signal has the form 

                          r(t)=sm(t)+n(t), 0≦t≦Tb, m=1, 2 

 The received signal r(t) is cross-correlated with each of the 

two basis signal waveforms           and         , as shown in Fig. 

8.20 
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Correlation-Type Demodulator (3/10) 
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 The correlator output waveforms are 

 

    which, when sampled at t=Tb, result in the outputs 

 

 Suppose the transmitted signal is s1(t)=s11             signal, so that 

                                . The output of the first correlator is 

 

                                      Eb 

      where s11 is the signal component and n1 is the noise 

component 
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Correlation-Type Demodulator (4/10) 

5 

 The output of the second correlator is 

 

 

 

 The output of the second correlator only includes the noise 

component n2, because           and           are orthogonal 

 The received signal vector is 

                               y=(y1,y2)  

                                        Eb 
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Correlation-Type Demodulator (5/10) 

6 

 It is easy to verify that when the signal s2(t)=s22          is 

transmitted, the outputs of the two correlators are y1=n1 and 

y2=s22+n2=  Eb +n2. The received signal vector is 

                                  y=(y1,y2)  

                                    =(n1,   Eb+n2) 

 The vector y at the output of the cross-correlators is fed to 

the detector, which decides whether the received signal 

vector corresponds to the transmission of a one or a zero 

 Since n(t) is a sample function of a white Gaussian noise 

process, the noise terms n1 and n2 are zero-mean Gaussian 

random variables with variance σn
2=N0/2 
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Correlation-Type Demodulator (6/10) 
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 The correlation between n1 and n2 is 

 

 

 

 n1 and n2 are uncorrelated; since they are Gaussian, n1 and n2 

are statistically independent 

 When the transmitted signal is s1(t), the conditional joint 

probability density function of the correlator output 

components (y1,y2) is 

                         s1                                    
Eb 
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Correlation-Type Demodulator (7/10) 
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 When s2(t) is transmitted, the conditional joint probability 

density function of the correlator components (y1,y2) is  

                                s2                                                   
Eb 

 Since the noise components n1 and n2 are statistically 

independent, we observe that the joint probability density 

functions of (y1,y2) factor into a product of marginal 

probability density function, i.e.,   

                            sm                     sm               sm 
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Correlation-Type Demodulator (8/10) 
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 Fig. 8.21 shows the probability density functions f(y1|sm) and 

f(y2|sm) when s1(t) is transmitted 



Correlation-Type Demodulator (9/10) 
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 Example 8.3.3. Assuming that the transmitted waveform is 

s2(t)=   Eb             , in the absence of additive noise, sketch the 

output waveforms of the two correlators shown in Fig. 8.20. 

The other signal waveform is s1(t)=  Eb        , where  

             and           are the basis functions shown in Fig. 8.11 

 When s2(t) is transmitted in the absence of noise, the output 

of the two correlators are 

                                                    Eb 

                                           Eb 

)(2 t

)(1 t

)()( 21 tt 

 
tt

ddsty
0

12
0

121 )()()()()( 

 
tt

ddsty
0

2

2
0

222 )()()()( 



Correlation-Type Demodulator (10/10) 
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 Example 8.3.3. (Cont’d) Note that the noise-free output of 

the first correlator is zero for 0≦t≦Tb because          and 

    are nonoverlapping orthogonal waveforms 
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Matched-Filter-Type Demodulator (1/6) 

12 

 We may use a filter-type demodulator and we first consider 

binary antipodal signals 

 In the case of binary antipodal signals, the received signal is 

 

    where          is a unit energy rectangular pulse 

 Suppose we pass the received signal r(t) through a linear, 

time-invariant filter with impulse response 

 

    The filter output is 

,2,1,0),()()(  mTttntstr bm

)(t

.0),()( bb TttTth 

 
t

dthrty
0

)()()( 



Matched-Filter-Type Demodulator (2/6) 

13 

 If we sample the output of the filter at t=Tb, we obtain 

 

    But                       . Therefore, 

 

 

 

 The output of the filter at t=Tb is exactly the same as the 

output obtained with a cross-correlator 

 A filter whose impulse response h(t)=s(Tb-t), where s(t) is 

assumed to be confined to the time interval 0≦t≦Tb, is 

called the matched filter to the signal s(t) 
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Matched-Filter-Type Demodulator (3/6) 

14 

 An example of a signal and its matched filter are shown in Fig. 

8.23. The response of h(t)=s(T-t) to the signal s(t) is 

 

 y(t) is basically the time-autocorrelation function of the signal 

s(t) 
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Matched-Filter-Type Demodulator (4/6) 

15 

 When we use s(t) and h(t) defined in Fig. 8.23,  y(t) for the 

triangular signal pulse is shown in Fig. 8.24 

 The autocorrelation function y(t) is an even function of t, 

which attains a peak at t=T. The peak value y(T) is equal to 

the energy of the signal s(t) 



Matched-Filter-Type Demodulator (5/6) 
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 We next consider binary orthogonal signals. Orthogonal 

signals are two-dimensional signals; hence, two linear time-

invariant filters should be employed 

 Consider the received signal 

 

     where sm(t) and m=1, 2 are the two orthogonal waveforms 

 The impulse responses of the two filters matched to  

             and           are defined as 

 

    and 
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Matched-Filter-Type Demodulator (6/6) 

17 

 When the received signal r(t) is passed through the two filters, 

their outputs are  

 

    If we sample the outputs of these filters at t=Tb, we obtain 

 

 

 (8.3.29) is the same as the outputs obtained from the cross-

correlators. The correlation-type demodulator and the 

matched filter-type demodulator yield identical outputs at 

t=Tb 
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Properties of the Matched Filter (1/4) 

18 

 The most important property of a matched filter is stated as 

follows: If a signal is corrupted by AWGN, the filter with the 

impulse response matched to s(t) maximizes the output 

signal-to-noise ratio (SNR) 

 Assume that the received signal r(t) consists of the signal s(t) 

and AWGN n(t), which has zero mean and a power-spectral 

density Sn(f)=N0/2 W/Hz. Suppose the signal r(t) is passed 

through a filter with the impulse response h(t), 0≦t≦ T 

 The filter response to the signal and noise components is 
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Properties of the Matched Filter (2/4) 

19 

 At the sampling instant t=T, the signal and noise components 

are 

 

 

 The problem is to select the filter impulse response that 

maximizes the output SNR, defined as 

 

 

 Let us evaluate                 . We have 
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Properties of the Matched Filter (3/4) 

20 

 Substituting for ys(T) and                 in (8.3.32), we obtain the 

expression for the output SNR as 

 

 

 The denominator of the SNR depends on the energy in h(t), 

the maximum output SNR over h(t) is obtained by 

maximizing the numerator of (S/N)o subject to the constraint 

that the denominator is held constant 

 The maximization of the numerator is performed by using 

Cauchy-Schwartz inequality,  

)]([
2

TyE n

)34.3.8(
)(

)()(

)(

)()(

0

2

2

2

0

0

2

2

2

0

00















 








 









T

N

T

T
N

T

o dttTh

dTsh

dttTh

dThs

N

S




















 dttgdttgdttgtg )()()()(

2

2

2

1

2

21



Properties of the Matched Filter (4/4) 

21 

 Equality holds when g1(t)=Cg2(t) for any arbitrary constant C 

 If we set g1(t)=h(t) and g2(t)=s(T-t), it is clear that the (S/N)o 

is maximized when h(t)=Cs(T-t), i.e., h(t) is matched to the 

signal s(t) 

 The output (maximum) SNR obtained with the matched 

filter is 

 

                                       Es                                                (8.3.36) 

 

  Es is the energy of the signal s(t). Here, Es is equivalent to bit 

energy Eb . The output SNR depends on the energy of the 

waveform s(t), but not on the detailed characteristics of s(t) 
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Frequency Domain Interpretation of the 

Matched Filter (1/8) 

22 

 Since h(t)=s(T-t), the Fourier transform of this relationship is 

 

 

 

    Note s(t) is a real signal.  

 The matched filter has a frequency response that is the 

complex conjugate of the transmitted signal spectrum 

multiplied by the phase factor e-j2πfT 

 In other words, |H(f)|=|S(f)|. The phase of H(f) is the 

negative of the phase of S(f), shifted by a linear function of T 
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Frequency Domain Interpretation of the 

Matched Filter (2/8) 

23 

 If the signal s(t), with spectrum S(f), is passed through the 

matched filter, the filter output has a spectrum Y(f)=|S(f)|2 

e-j2πfT. Hence, the output waveform is 

 

 

 By sampling the output of the matched filter at t=T, we 

obtain 

                                                                         Eb , 

    where the last step follows from Parseval’s relation 
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Frequency Domain Interpretation of the 

Matched Filter (3/8) 

24 

 The noise of the output of the matched filter has a power 

spectral density 

 

 The total noise power at the output of the matched filter is 

 

 

   

                                       Eb 

 The signal power is 
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Frequency Domain Interpretation of the 

Matched Filter (4/8) 

25 

 The output SNR is the ratio of the signal power to the noise 

power. Hence, 

                                                Eb 

 

 The SNR agrees with (8.3.36). This means the matched filter 

demodulator is the optimal demodulator in an AWGN 

channel no matter what kind of binary signaling is used (both 

antipodal and orthogonal signaling are OK!)  
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Frequency Domain Interpretation of the 

Matched Filter (5/8) 

26 

 Example 8.3.5. Consider the binary orthogonal PPM signals, 

which are shown in Fig. 8.10, for transmitting information 

over an AWGN channel. Determine the impulse response of 

the matched filter demodulators and the output waveforms 

of the matched filter demodulators when the transmitted 

signal is s1(t) 



Frequency Domain Interpretation of the 

Matched Filter (6/8) 

27 

 Example 8.3.5.  (Cont’d) We choose           and           as 

shown in Fig. 8.25(a). The impulse responses of the two 

matched filters are illustrated in Fig. 8.25(b). 

 If s1(t) is transmitted, the noise-free responses of the two 

matched filters are shown in Fig. 8.25(c). Since y1(t) and y2(t) 

are sampled at t=Tb, the received vector is 

                            y=(y1,y2)=(  Eb  +n1,n2), 

    where n1=y1n(Tb) and n2=y2n(Tb) are the noise components 

given by 
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Frequency Domain Interpretation of the 

Matched Filter (7/8) 

28 

 Clearly, E[nk]=E[ykn(Tb)]=0. Their variance is 

 

 

 

 For the first matched filter, 

                                       Eb            Eb 

 

 The output of the two matched filters corresponding to the 

transmitted signal s2(t) are (y1,y2)=(n1,   Eb +n2) 
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Frequency Domain Interpretation of the 

Matched Filter (8/8) 

29 

 



The Performance of the Optimum 

Detector for Binary Signals (1/9) 

30 

 We describe optimum decision rule employed by the 

detector to make decisions based on the output from the 

demodulator 

 We assume that the signals received in successive signal 

intervals are statistically independent so the detector only 

needs to consider its input in a given bit interval 

 First we consider binary antipodal signals. The output of the 

demodulator in any bit interval is 

                                 y=sm+n,   m=1,2, 

    where sm= ±  Eb  and n is a zero-mean Gaussian random 

variable with variance N0/2     



The Performance of the Optimum 

Detector for Binary Signals (2/9) 

31 

 The input to the detector is a scalar. The detector compares y 

with a threshold α. Determine whether y>α and declares 

that the signal s1(t) is transmitted; otherwise, it declares that 

s2(t) was transmitted 

 For the binary antipodal signals, the average probability of 

error as a function of the threshold α is 

                                                                                   , 

    where P(s1) and P(s2) are the a priori probabilities of the two 

possible transmitted signals 











 dysyfsPdysyfsPP )|()()|()()( 22112



The Performance of the Optimum 

Detector for Binary Signals (3/9) 

32 

 The optimum α to minimize P2(α) is determined by 

differentiating P2(α) with respect to α and setting the 

derivative to zero. We obtain 

 

    or equivalently, 

                                                                                  (8.3.49) 

 Substitute s1=   Eb  and s2=-  Eb   and the conditional PDFs 

into (8.3.49), we have 

                               e4α  Eb/N0 

    The optimum value of the threshold is 
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The Performance of the Optimum 

Detector for Binary Signals (4/9) 

33 

 If P(s1)>P(s2), then α*<0, and if P(s2)>P(s1), then α*>0. 

    In practice, the two possible signals are usually equally 

probable, i.e., the a priori probabilities P(s1)=P(s2)=1/2, the 

threshold α*=0 

 For the case of equal a priori probabilities, the average 

probability of error is 

 

                                    Eb 

 

    where Q(x) is the area under the tail of the normal (Gaussian) 

probability density function, defined as 
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The Performance of the Optimum 

Detector for Binary Signals (5/9) 

34 

 We observe that the probability of error depends only on the 

signal-to-noise ratio 2Eb/N0 and not on the detailed 

characteristics of the pulse waveforms 

 The average error probability tends to zero exponentially as 

SNR increases 



The Performance of the Optimum 

Detector for Binary Signals (6/9) 

35 

 We now consider binary orthogonal signals. The output of 

the demodulator is the two-dimensional vector y=(y1,y2), 

where y1 and y2 are the output of the two cross-correlators or 

the two matched filters 

 Recall that if the signal s1(t) is transmitted, the demodulator 

output are  

                                         y1= Eb+n1 

    and 

                                          y2=n2 

 n1 and n2 are statistically independent, zero-mean Gaussian 

variables with variance N0/2 



The Performance of the Optimum 

Detector for Binary Signals (7/9) 

36 

 For the case of equal a priori probabilities, i.e., 

P(s1)=P(s2)=1/2, the detector that minimizes the average 

probability of error simply compares y1 with y2. If y1>y2, the 

detector declares that s1(t) was transmitted. Otherwise, it 

declares that s2(t) was transmitted 

 Assume s1(t) was transmitted, the probability of error is 

simply the probability that y1-y2<0.  

 y1 and y2 are Gaussian with equal variance N0/2 and 

statistically independent, the difference  

                                z=y1-y2 

                                  =   Eb +n1-n2 

    is a Gaussian random variable with mean   Eb  and variance N0 



The Performance of the Optimum 

Detector for Binary Signals (8/9) 

37 

 The probability density function of z is 

                                                    Eb 

    and the average probability of error is 

 

                              Eb 

 

 When we compare the average probability of error of binary 

antipodal signals to that of binary orthogonal signals, we 

observe that, for the same error probability P2, the binary 

antipodal signals require a factor of two (3 dB) less signal 

energy than orthogonal signals 
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The Performance of the Optimum 

Detector for Binary Signals (9/9) 

38 

 


