
1

Chapter 5 Designing Combinational

Systems (II)

Binary Decoders (1/11)

2

 Example 5.1. We have available 74138 decoders and wish to

select one of 32 devices. Design the circuit by using four such

decoders

 One of these would select one of the first eight addressed

devices; another would select one of the next eight; and so

forth

 Let the addresses were given by bits a, b, c, d, e, then c, d, e

would be the inputs to each of the four decoders, and a, b

would be used to enable the appropriate one

 The first decoder would be enabled when a=b=0, the second

when a=0 and b=1, the third when a=1 and b=0, and the

fourth when a=b=1

Binary Decoders (2/11)

3

 Example 5.1. (Cont’d)

Binary Decoders (3/11)

4

 Example 5.2. An extra decoder can be used to enable other

decoders. If we had two-input, four-output active low

decoders and needed to select one of 16 devices. Design the

circuit

 The 16 devices are divided into four groups, which are 0-3,

4-7, 8-11, and 12-15. The first two (highest order) inputs are

used to choose the four groups, while the other two (lowest

order) inputs are used to choose among the four devices in

that group

Binary Decoders (4/11)

5

 Example 5.2. (Cont’d)

Binary Decoders (5/11)

6

 Another application of decoders is the implementation of

logic functions. Each active high output of a decoder

corresponds to a minterm of that function. We need an OR

gate connected to the appropriate outputs

 With an active low output decoder, the OR gate is replaced

by a NAND

 With more than one output functions of the same set of

inputs, we still only need one decoder, but one OR or

NAND for each output function

Binary Decoders (6/11)

7

 Example 5.3. Implement the following two functions using

an active-high output decoder and an active-low output

decoder, respectively. where

 f(a,b,c)=Σm(0,2,3,7)

 g(a,b,c)=Σm(1,4,6,7)

Binary Decoders (7/11)

8

 Example 5.4. Implement the following functions using only

the decoders shown below and three NAND gates

 f(a,b,c,d)=Σm(0,2,3,4,7,8,10,11,15)

 g(a,b,c,d)=Σm(0,1,2,5,8,9,10,12,13,15)

 h(a,b,c,d)=Σm(2,4,6,8,10,12,14,15).

 Truth table for the decoder. It is an active-low output

decoder

Binary Decoders (8/11)

9

 Example 5.4. (Cont’d) We would need a 9-input NAND

for f, a 10-input gate for g, and a 8-input gate for h.

Binary Decoders (9/11)

10

 Example 5.4. (Cont’d)

Binary Decoders (10/11)

11

 Example 5.4. (Cont’d) The 01 row of the maps either have

no 1’s or all 1’s. This implies one decoder can be removed.

 The pink terms correspond to cd, c’d, and cd’, the 3, 1, and 2

outputs, respectively, from a decoder with inputs c and d

 The tan outputs correspond to b’d’ and bd’, the 0 and 2

outputs from a decoder with input b and d

Binary Decoders (11/11)

12

 The remaining 1’s are covered as before

Encoders and Priority Encoders (1/4)

13

 A binary encoder is the inverse of a binary decoder

 If we assume there exactly only one input (of A0, A1, A2, A3) is

1, then the truth table of Table 5.4 describes the behavior of

the encoder

 Z0 and Z1 can be represented as

Encoders and Priority Encoders (2/4)

14

 If another output, N, indicates that no input is active, then

 If more than one input can occur at the same time, then some

priority must be established.

 The priorities are normally arranged in descending (or

ascending) order with the highest priority given to the

largest (smallest) input number

Encoders and Priority Encoders (3/4)

15

 Assume device 7 has the highest priority, the truth table is

shown in Table 5.5.

 The output NR indicates that there are no requrests

Encoders and Priority Encoders (4/4)

16

 The 74147 is a commercial BCD (binary coded decimal)

encoder, taking nine active low input lines and encoding

them into four active low outputs

 There is no 0’ input line

Multiplexers and Demultiplexers (1/8)

17

 A multiplexer, often referred as a mux, is basically a switch

that passes one of its data inputs through to the output, as a

function of a set of selected inputs

 The output out is determined by S, where

1,

0,

Sx

Sw
out

Multiplexers and Demultiplexers (2/8)

18

 A four-way multiplexer can be implemented with AND and

OR gates, as shown in Figure 5.12

Multiplexers and Demultiplexers (3/8)

19

Multiplexers and Demultiplexers (4/8)

20

 Example 5.5. Implement a three-variable function f(a,b,c)

using an eight-way multiplexer. The three variables go to the

control inputs. The truth table for the function is then

connected to the data inputs. The function f(a,b,c) is defined

as follows

 f(a,b,c)=Σm(0,1,2, 5).

 The truth table is

Multiplexers and Demultiplexers (5/8)

21

 Example 5.5. (Cont’d) With a mux, it can be implemented

by

Multiplexers and Demultiplexers (6/8)

22

 Example 5.5. (Cont’d) We can also use a four-way

multiplexer to implement it. The truth table and the

implementation areas follows is

Multiplexers and Demultiplexers (7/8)

23

 A demultiplexer (demux) is the inverse of a mux. It routes a

singal from one place to one of many

 There are some commercially available multiplexer packages,

e.g., 74151, 74153, and 74157

 Fig. 5.14 shows one bit of a four-way demux, where a and b

select which way the signal, in, is directed. The circuit is the

same as for a four-way decoder with the signal in replacing

EN

Multiplexers and Demultiplexers (8/8)

24

Three-Stage Gates (1/4)

25

 In a three-state gate, there is an enable input, shown on the

side of the gate. If that input is active (it could be active high

or active low), the gate behaves as usual. If the control input

is inactive, the output behaves as if it is not connected (as an

open circuit, high impedance). The output is typically

represented by a Z

Three-Stage Gates (2/4)

26

 Fig. 5.16 is a two-way multiplexer. The enable is the control

input, determining whether f=a (EN=0) or f=b (EN=1). The

three-state gate is often used for signals that travel between

systems

Three-Stage Gates (3/4)

27

 A bus is a set of lines over which data are transferred.

Sometimes, that data may travel in either direction between

devices located physically at a distance. A bus allows one bit

to travel at a time instant

 Example 5.6. The following circuits show two

implementations of a one-bit bus – one using AND/OR gates

and the other using three-state gates

Three-Stage Gates (4/4)

28

