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Chapter 5 Designing Combinational 

Systems (I) 



Overview (1/1) 
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 Large systems are usually designed by breaking them up into 

smaller subsystems 

 We will first look at systems that consist of a number of 

identical blocks. (These are sometimes referred to as iterative 

systems.) Adders and other arithmetic functions are examples 

of this type of system 

 Gate arrays are commonly available in three forms: read only 

memory (ROM), programmable logic array (PLA), and 

programmable array logic (PAL) 



Iterative Systems (1/1) 
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 When we add two numbers by hand, we add the two least 

significant bits (plus possibly a carry-in) to produce one bit of 

the sum and a carry to the next bit 

 If we wish to build an n-bit adder, we need only connect n of 

these. A 4-bit version is shown in Fig. 5.1 



Delay in Combinational Logic Circuits 

(1/4) 
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 When the input to a gate changes, the output of that gate 

does not change instantaneously, but there is a small delay, ∆. 

If the output of one gate is used as the input to another, the 

delays add 



Delay in Combinational Logic Circuits 

(2/4) 
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 The output is stable after the longest delay path. We are not 

usually interested in the output until it is stable 

 Consider the full adder. It adds two 1-bit numbers and a carry 

input from the next less significant digit and produces a sum 

bit and a carry out to the next more significant digit 

 We assume that all inputs are available at the same time and 

the processing delay of a gate is ∆. If two inputs to a gate 

change at different times, the output may change as late as ∆ 

after the last input changes 



Delay in Combinational Logic Circuits 

(3/4) 
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 Figure 5.3 shows four critical paths and their time delays in 

terms of ∆  



Delay in Combinational Logic Circuits 

(4/4) 
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 The total time delay required for an n-bit adder (carry-ripple 

adder) is calculated as the delay from the inputs to cout (for 

the least significant bit), plus n-2 times the delay from cin to 

cout (for the middle full adders), plus the longer of the delay 

from cin to s (for the most significant bit). That equals 5∆+ 

(n-2)×2∆+3∆=(2n+4)∆ 

 For a 64-bit adder, the delay would be 132∆ 



Adders (1/4) 
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 One approach to building an n-bit adder is to connect 

together n 1-bit adders. This is referred to as a carry-ripple 

adder. The time for the output of the adder to become stable 

is as large as (2n+4)∆ 

 To speed this up, several approaches have been proposed. 

One approach is to implement a multi-bit adder with an SOP 

expression 

 The truth table for a 2-bit adder is shown in Table 5.1, where 

a1 and b1 are the low-order bits 



Adders (2/4) 
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 The minimum SOP expressions are  



Adders (3/4) 
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 This two-level solution requires a 12-input gate for s2. Clearly, 

we could repeat this process for a 3-bit or 4-bit adder, but 

the algebra gets very complex, and the number of terms 

increases drastically 

 Another problem that we would encounter in this 

implementation is there is a limitation on the number of 

inputs (called fan-in) for a gate. Gates with 12 inputs may not 

be practical or may encounter delays of greater than ∆ 



Adders (4/4) 
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 There are 4-bit adders: the 7483, 7483A, and 74283. Each is 

implemented differently, with a three-level circuit for the 

carry-out. The total delay for an n-bit adder reaches  

   (3/4n+1)∆ 

 When larger adders are needed, these 4-bit adders can be 

cascaded. For example, a 12-bit adder, using three 4-bit adders 



Subtractors and Adder (1/2) 
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 To build an adder/subtractor, we need a signal line that is 0 

for addition and 1 for subtraction. We call that a’/s (short for 

add’/subtractor) 

 Remember that 

 

 In Fig. 5-5, the input bits bi, i=1,2,3,4, are connected 

through Exclusive-OR gates enabled by a’/s. The numbering 

format is 2’s complement 



Subtractors and Adder (2/2) 
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Comparators (1/2) 
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 The Exclusive-OR produces a 1 if the two inputs are unequal 

and a 0, otherwise. Mutli-bit numbers are unequal if any of 

the input pairs are unequal. 



Comparators (2/2) 
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 To build a 4-bit comparator that will indicate greater than 

and less than, as well as equal to (for unsigned numbers), we 

recognize that, starting at the most significant bit (a4 and b4) 

 ` 
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Binary Decoders (1/7) 
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 A binary decoder is a device that, when activated, selects one of 

several output lines, based on a coded input signal. Most 

commonly, the input is an n-bit binary number, and there are 

up to 2n output lines 

 Fig. 5.8a is an active high decoder, while Fig. 5.8b is an active 

low decoder 



Binary Decoders (2/7) 
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Binary Decoders (3/7) 
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Binary Decoders (4/7) 

19 

 The circuit for an active high output decoder with an active 

low enable input is shown in Fig. 5.9. Note the enable input 

is inverted and connected to each AND gate. When EN’=1, a 

0 is on the input to each AND gate, and, thus, all of the AND 

gate outputs are 0 

 In most commercial literature, such signals are labeled with 

an overbar EN, rather than as EN’ 

 



Binary Decoders (5/7) 

20 

 



Binary Decoders (6/7) 
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 A truth table for the 74138 is shown in Table 5.3 and the 

block diagram is shown in Fig. 5.10 



Binary Decoders (7/7) 
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