Chapter 4 Function Minimization Algorithms (III)

Prime Implicant Tables for Multiple Output Problems (1/4)

• Consider finding the minimum output of the set of functions

 $f(a,b,c) = \Sigma m(2,3,7)$ $g(a,b,c) = \Sigma m(4,3,7)$

 Essential prime implicants are found as before. An X is placed in the column of a function for which the term is an implicant Table 4.9 A multiple output prime implicant table.

				f			g	
			V	V		V	V	
	\$		2	3	7	4	5	7
1 1 1	4	Α			Х			Х
0 1 -*	3	В	Х	Х				
1 0 -*	3	С				Х	Х	
- 1 1	3	D		Х	Х			
1 – 1	3	E					Х	Х

Prime Implicant Tables for Multiple Output Problems (2/4)

• The table is then reduced as in Table 4.10

Table 4.10A reduced prime
implicant table.

• It is clear that we can use term *A* to cover both functions, rather than two separate terms, even though *A* costs 4 and the others cost 3

Prime Implicant Tables for Multiple Output Problems (3/4)

• The solution is thus

f = a'b + abcg = ab' + abc

• **Example 4.12.** Consider finding the minimum output of the functions

 $f(a, b, c, d) = \Sigma m(2, 3, 4, 6, 9, 11, 12) + \Sigma d(0, 1, 14, 15)$

 $g(a, b, c, d) = \Sigma m(2, 6, 10, 11, 12) + \Sigma d(0, 1, 14, 15)$

• Don't Cares will not be consider again because all the prime implicants (including Don't Cares) are found by Q-M method or Iterated Consensus method. They are listed below

Prime Implicant Tables for Multiple Output Problems (4/4)

