Chapter 4 Function Minimization Algorithms (III)

Prime Implicant Tables for Multiple Output Problems (1/4)

- Consider finding the minimum output of the set of functions

$$
\begin{aligned}
& f(a, b, c)=\sum m(2,3,7) \\
& g(a, b, c)=\sum m(4,3,7)
\end{aligned}
$$

- Essential prime implicants are found as before. An X is placed in the column of a function for which the term is an implicant Table 4.9 A multiple output prime implicant table.

Prime Implicant Tables for Multiple Output Problems (2/4)

- The table is then reduced as in Table 4.10

Table 4.10 A reduced prime implicant table.

	\$	f		g
			7	7
111	4	A	X	X
- 11	3	D	X	
1-1	3	E		X

- It is clear that we can use term A to cover both functions, rather than two separate terms, even though A costs 4 and the others cost 3

Prime Implicant Tables for Multiple Output Problems (3/4)

- The solution is thus

$$
\begin{aligned}
f & =a^{\prime} b+a b c \\
g & =a b^{\prime}+a b c
\end{aligned}
$$

- Example 4.12. Consider finding the minimum output of the functions

$$
\begin{aligned}
& f(a, b, c, d)=\sum m(2,3,4,6,9,11,12)+\Sigma d(0,1,14,15) \\
& g(a, b, c, d)=\Sigma m(2,6,10,11,12)+\sum d(0,1,14,15)
\end{aligned}
$$

- Don't Cares will not be consider again because all the prime implicants (including Don't Cares) are found by Q-M method or Iterated Consensus method. They are listed below

Prime Implicant Tables for Multiple Output Problems (4/4)

