Chapter 8 Digital Modulation in an
Additive White Gaussian Noise Baseband
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Binary Pulse Position Modulation (1/7)

® In binary PPM, we employ two signal wavetorms, s,(r) and

5,(t), which are shown in Fig. 8.10. s,(t) and s,(z) are

orthogonal, i.e.,

jOTb 5,(£)s, ()dt = 0
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Figure 8.10 Signal pulses in binary PPM (orthogonal signals).
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Binary Pulse Position Modulation (2/7)

® The two signal wavetorms have identical energies, i.e.,
I, - I, -
g = jo s> (¢)dt = jo s, (¢)dt
® In order to represent these two waveforms geometrically as
vectors, we need two nonoverlapping (orthogonal) basis

functions, and each must be normalized to unit energy. These

two basis functions, ¥;(f) and ¥,(?), are shown in Fig. 8.11
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@ Figure 8.11 Twao orthogonal basis functions for binary PPM signals.




Binary Pulse Position Modulation (3/7)

® The signal waveforms s,(t) and s,(t) may be expressed as
$1() = 8,7, (1) + 5,07, (1)
$,(8) = 55,9, () + 5,7, (1)
where we can easily observe that

su =[5, (0d=E,
S0 =[5, (0)dr =0

Sr1 = J-OTb s,y (1)dt =0
5 = [ 5,0, (0 =€,




Binary Pulse Position Modulation (4/7)

® The two signal waveforms are represented as two-

dimensional vectors s, and s, when

$1=(511,0)=( \/g,O)
52:(()»522):(0»\/?1))

® The two signals are perpendicular; hence, they are

orthogonal , i.e., their dot product is equal to zero
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Figure 8.12 Geometric representation of
binary orthogonal (PPM) signal waveforms.
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Binary Pulse Position Modulation (5/7)

o Example 8.2.2. Consider the two orthogonal signal
waveforms shown in Fig. 8.13. Show that these two signal
waveforms have a similar geometric representation as the

two PPM pulses shown in Fig. 8. 12.
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@ Figure 8.13 Two orthogonal signal waveforms.




Binary Pulse Position Modulation (6/7)

* Example 8.2.2. (Cont’d) By using the orthonormal basis
waveforms ,(f) and w,(¢) in Fig. 8.11, the signal

waveform s,’(t) and s,’(t) are expressed as

5, (1) = 5,0, () + 51, W, (0)
and

Szv(t) = S21'WI () + 322'W2 (2),

where




Binary Pulse Position Modulation (7/7)

* Example 8.2.2, (Cont’d) The vectors s,” and s,” are shown
in the figure. We observe that s,” and s,” are perpendicular
(orthogonal vectors) and are simply a phase-rotated version

of the orthogonal vectors shown in Fig. 8.12(a)
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Optimum Receiver for Binary Modulation
Signals in Additive White Gaussian Noise (1/4)

e We begin by describing the channel that corrupts the

transmitted signal by the addition of noise

® The communication channel is assumed to corrupt the

transmitted signal by the addition of white Gaussian noise

Transmitted
signal

Channel
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Noise
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Received signal

©r(0) = 5,(0) + n(r)

Figure 8.15 Model for the received signal passed through an AWGN channel.




Optimum Receiver for Binary Modulation
Signhals in Additive White Gaussian Noise (2/4)

® The received signal in a signal interval of duration T, may be

expressed as
r(t)=s_(t)*n(t) m=1,?2

where n(t) denotes the sample function of the additive white
Gaussian noise (AW GN) process with the power spectral
density S (f)= % W/Hz

® Based on the observation of r(z) over the signal interval, we
wish to design a receiver that is optimum in the sense that it
minimizes the probability of making an error. We focus on

the processing of the received signal r(t) in the interval
0=t=T,
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Optimum Receiver for Binary Modulation
Signals in Additive White Gaussian Noise (3/4)

® We subdivide the receiver into two parts, the signal

demodulator and the detector, as shown in Fig. 8.16

® The signal demodulator’s function is to convert the received
signal waveform r(t) into a vector y, whose dimension is

equal to the dimension of the transmitted signal waveforms

® The detector’s function is to decide which of the two possible

signal waveforms was transmitted based on y
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Figure 8.16 Receiver for digitally modulated signals.




Optimum Receiver for Binary Modulation
Signhals in Additive White Gaussian Noise (4/4)

® There are two realizations of the signal demodulator. The first
is based on the use of signal correlators. The second is based

on the use of matched filters

® The optimum detector that follows the signal demodulator is

designed to minimize the probability of error




Correlation-Type Demodulator (1/6)

® We consider the processing of the received signal by a
Correlation—type demodulator for binary antipodal Signal

(binary PAM) and binary orthogonal signals (binary PPM)
e We first consider binary antipodal signals

(D=8 (1), m=1,2,

where w(?) is the unit energy rectangular pulse shown in Fig,

8.6 and 51:\/?1), 52:—\/?1)

® The received signal is

r(t)=s w(t) +n(t), 0=t=T,, m=1, 2

™~
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Correlation-Type Demodulator (2/6)

® In a correlation-type demodulator, the received signal r(t) is
multiplied by the signal waveform (¢) and the product is
integrated over the interval 0 =¢=T,. We say that r(z) is

cross-correlated with w(?)

® This cross—correle}tion operation produces the output

yoy=| fr(r)w(r)dr
= [ [s,w (D) + (D) (2)dz
=s, [ v’ (@de+ [ n@w@ydr.  E3D

r (1) o 20/ ,
Received ‘
signal T
Sample at
t=Tp Figure 8.17 Cross-correlator for

@ (1) binary antipodal signals. /




Correlation-Type Demodulator (3/6)

® We sample the output of the correlator at t=T,. Thus,
)/( Tb):Sm—I_n’

where

"= jOT” w(D)n(z)dr.

* Since n(r) is a sample function of a white Gaussian noise
process, the noise term n is a Gaussian random variable with

zero mean and with variance
o2 = Em) =" [" Eln(n(D)}y (W (0)drdr

=] :OTb % o(t—tw(t)w(r)dtdr

— No .OTb Wz (t)dt




Correlation-Type Demodulator (4/6)

® For a given signal transmission (given s, ), the output of the
correlator (y=y(T,)) is a Gaussian random variable with mean

s. and variance N,/2, i.e.,

fls,)=—rhe M, m=1,2

® These two conditional probability density functions are

illustrated in Fig. 8.18. This correlator output is fed to the
detector, which decides whether the transmitted bit is a zero

Oor a onc

fo
I I Figure 8.18 The
: ! conditional probability
1 : _ density functions of the

— >V correlator output for binary
~ Ve Vs antipodal signaling.
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Correlation-Type Demodulator (5/6)

* Example 8.3.1. Sketch the noise-free output of the
correlator for the rectangular pulse w(#), as shown in Fig,

8.6, when s,(¢) and s,(¢) are transmitted.

® From (8.3.4) and n(z)=0, the signal waveform at the output

of the correlator is

W0=s, [ v’ (@)

The graphs of y(¢) for s, :\/?b and s,= —\/27 are shown in Fig,

8.19 ¥(t]s) ¥(1]s)
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Figure 8.19 Noise-free cross-correlator outputs when s1(¢z) and s2(¢) are transmitted. /




Correlation-Type Demodulator (6/6)

* Example 8.3.1. (Cont’d) We observe that the maximum
signal at the output of the correlator occurs at t=T,. We also
observe that the correlator must be reset to zero at the end
of each bit interval T,, so that it can be used in the
demodulation of the received signal in the next signal interval.

Such an integrator is called an integrate-and-dump fi]ter




