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Chapter 8  Digital Modulation in an 

Additive White Gaussian Noise Baseband 

Channel (II) 
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 In binary PPM, we employ two signal waveforms, s1(t) and 

s2(t), which are shown in Fig. 8.10. s1(t) and s2(t) are 

orthogonal, i.e.,  
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Binary Pulse Position Modulation (2/7) 
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 The two signal waveforms have identical energies, i.e.,  

                        Eb 

 In order to represent these two waveforms geometrically as 

vectors, we need two nonoverlapping (orthogonal) basis 

functions, and each must be normalized to unit energy. These 

two basis functions,          and         , are shown in Fig. 8.11 
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Binary Pulse Position Modulation (3/7) 
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 The signal waveforms s1(t) and s2(t) may be expressed as 

 

 

     where we can easily observe that 
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Binary Pulse Position Modulation (4/7) 
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 The two signal waveforms are represented as two-

dimensional vectors s1 and s2 when 

                          s1=(s11,0)=(   Eb     ) 

                          s2=(0,s22)=(      Eb ) 

 The two signals are perpendicular; hence, they are 

orthogonal , i.e., their dot product is equal to zero 
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Binary Pulse Position Modulation (5/7) 

6 

 Example 8.2.2. Consider the two orthogonal signal 

waveforms shown in Fig. 8.13. Show that these two signal 

waveforms have a similar geometric representation as the 

two PPM pulses shown in Fig. 8. 12.  



Binary Pulse Position Modulation (6/7) 
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 Example 8.2.2. (Cont’d) By using the orthonormal basis 

waveforms           and            in Fig. 8.11, the signal 

waveform s1’(t) and s2’(t) are expressed as 
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Binary Pulse Position Modulation (7/7) 
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 Example 8.2.2. (Cont’d) The vectors s1’ and s2’ are shown 

in the figure. We observe that s1’ and s2’ are perpendicular 

(orthogonal vectors) and are simply a phase-rotated version 

of the orthogonal vectors shown in Fig. 8.12(a) 



Optimum Receiver for Binary Modulation 

Signals in Additive White Gaussian Noise (1/4) 
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 We begin by describing the channel that corrupts the 

transmitted signal by the addition of noise 

 The communication channel is assumed to corrupt the 

transmitted signal by the addition of white Gaussian noise 

 



Optimum Receiver for Binary Modulation 

Signals in Additive White Gaussian Noise (2/4) 
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 The received signal in a signal interval of duration Tb may be 

expressed as 

                               r(t)=sm(t)+n(t)    m=1, 2 

    where n(t) denotes the sample function of the additive white 

Gaussian noise (AWGN) process with the power spectral 

density Sn(f)=       W/Hz 

 Based on the observation of r(t) over the signal interval, we 

wish to design a receiver that is optimum in the sense that it 

minimizes the probability of making an error. We focus on 

the processing of the received signal r(t) in the interval 

0≦t≦Tb 

2
0N



Optimum Receiver for Binary Modulation 

Signals in Additive White Gaussian Noise (3/4) 
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 We subdivide the receiver into two parts, the signal 

demodulator and the detector, as shown in Fig. 8.16 

 The signal demodulator’s function is to convert the received 

signal waveform r(t) into a vector y, whose dimension is 

equal to the dimension of the transmitted signal waveforms 

 The detector’s function is to decide which of the two possible 

signal waveforms was transmitted based on y 

 



Optimum Receiver for Binary Modulation 

Signals in Additive White Gaussian Noise (4/4) 

12 

 There are two realizations of the signal demodulator. The first 

is based on the use of signal correlators. The second is based 

on the use of matched filters 

 The optimum detector that follows the signal demodulator is 

designed to minimize the probability of error 



Correlation-Type Demodulator (1/6) 
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 We consider the processing of the received signal by a 

correlation-type demodulator for binary antipodal signal 

(binary PAM) and binary orthogonal signals (binary PPM) 

 We first consider binary antipodal signals 

                                sm(t)=sm       ,        m=1, 2, 

    where         is the unit energy rectangular pulse shown in Fig. 

8.6 and s1=   Eb , s2=－ Eb  

 The received signal is 

                           r(t)=sm        +n(t), 0≦t≦Tb, m=1, 2 
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Correlation-Type Demodulator (2/6) 
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 In a correlation-type demodulator, the received signal r(t) is 

multiplied by the signal waveform         and the product is 

integrated over the interval 0≦t≦Tb. We say that r(t) is 

cross-correlated with  

 This cross-correlation operation produces the output 

 

 

                                                                                        (8.3.4) 
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Correlation-Type Demodulator (3/6) 
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 We sample the output of the correlator at t=Tb. Thus, 

                                  y(Tb)=sm+n, 

     where 

 

 Since n(t) is a sample function of a white Gaussian noise 

process, the noise term n is a Gaussian random variable with 

zero mean and with variance 
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Correlation-Type Demodulator (4/6) 
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 For a given signal transmission (given sm), the output of the 

correlator (y=y(Tb)) is a Gaussian random variable with mean 

sm and variance N0/2, i.e., 

                                                                 m=1, 2 

 These two conditional probability density functions are 

illustrated in Fig. 8.18. This correlator output is fed to the 

detector, which decides whether the transmitted bit is a zero 

or a one 

,)|( 0
2

0

/)(1 Nsy

Nm
mesyf








Correlation-Type Demodulator (5/6) 
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 Example 8.3.1. Sketch the noise-free output of the 

correlator for the rectangular pulse         , as shown in Fig. 

8.6, when s1(t) and s2(t) are transmitted.  

 From (8.3.4) and n(t)=0, the signal waveform at the output 

of the correlator is 

 

    The graphs of y(t) for s1=  Eb  and s2=－Eb   are shown in Fig. 

8.19 
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Correlation-Type Demodulator (6/6) 
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 Example 8.3.1. (Cont’d) We observe that the maximum 

signal at the output of the correlator occurs at t=Tb. We also 

observe that the correlator must be reset to zero at the end 

of each bit interval Tb, so that it can be used in the 

demodulation of the received signal in the next signal interval. 

Such an integrator is called an integrate-and-dump filter 


