# Chapter 3 The Karnaugh Map (III)

## Five- and Six-Variable Maps (1/17)

 A five-variable map consists of 2<sup>5</sup>=32 squares. We prefer to look at it as two layers of 16 squares each. Each square in the bottom layer corresponds to the minterm numbered 16 more than the square above it.



## Five- and Six-Variable Maps (2/17)

• **Example 3.27.** Circle the following minterms on the Karnaugh map

$$\begin{split} m_2 + m_{18} &= A'B'C'DE' + AB'C'DE' = B'C'DE' \\ m_{11} + m_{27} &= A'BC'DE + ABC'DE = BC'DE \\ m_5 + m_7 + m_{21} + m_{23} &= B'CE \end{split}$$



## Five- and Six-Variable Maps (3/17)

• Six-variable maps are drawn as four layers of 16-square maps, where the first two variables determine the layer and the other variables specify the square within the layer



# Five- and Six-Variable Maps (4/17)

- To simplify a five-variable map, we first look for the essential prime implicants. A good staring point is to find 1's on one layer for which there is a 0 in the corresponding square on the adjoining layer.
- Prime implicants that cover that 1 are contained completely on that layer. Thus, we have a four-variable map problem.

### Five- and Six-Variable Maps (5/17)

#### • Consider the following map.

Map 3.19 Essential prime implicants on one layer.



• So far, we have

 $F = A'B'C + A'BE + AB'C'E' + ABCD'E' + \cdots$ 

## Five- and Six-Variable Maps (6/17)

 The two 1's remaining uncovered do have counterparts on the other layer. The only prime implicant that covers them is *BDE*. The complete solution is

F = A'B'C + A'BE + AB'C'E' + ABCD'E' + BDE





## Five- and Six-Variable Maps (7/17)

• **Example 3.28.** Obtain a minimum SOP form for the function

 $G(A, B, C, D, E) = \Sigma m(1, 3, 8, 9, 11, 12, 14, 17, 19, 20, 22, 24, 25, 27)$ 



## Five- and Six-Variable Maps (8/17)

• Example 3.28 (Cont'd) The essential prime implicant on the second map are shown as don't cares





## Five- and Six-Variable Maps (9/17)

• Example 3.28 (Cont'd)



• The solution is

G = A'BCE' + AB'CE' + C'E + BC'D'

### Five- and Six-Variable Maps (10/17)

• Example 3.29. Obtain the function from the maps.



#### Five- and Six-Variable Maps (11/17)

• Example 3.29 (Cont'd) We have



#### Five- and Six-Variable Maps (12/17)

• Example 3.29 (Cont'd)

![](_page_12_Figure_2.jpeg)

• The two solutions are

F = A'C'E' + ABCD + CD'E + BCE + B'C'DE' + A'CD'F = A'C'E' + ABCD + CD'E + BCE + B'C'DE' + A'D'E'

### Five- and Six-Variable Maps (13/17)

• Example 3.30. Consider the function

 $H(A, B, C, D, E) = \Sigma m(1, 8, 9, 12, 13, 14, 16, 18, 19, 22, 23, 24, 30) + \Sigma d(2, 3, 5, 6, 7, 17, 25, 26)$ 

• A map of *H* is shown below with the only essential prime implicant, *B'D* (a group of eight, including four 1's and four don't cares), circled

![](_page_13_Figure_4.jpeg)

#### Five- and Six-Variable Maps (14/17)

• Example 3.30 (Cont'd)

![](_page_14_Figure_2.jpeg)

### Five- and Six-Variable Maps (15/17)

• Example 3.30 (Cont'd)

![](_page_15_Figure_2.jpeg)

• The eight solutions are

$$H = B'D + CDE' + A'BD' + \begin{bmatrix} AC'E' \\ AC'D' \end{bmatrix} + \begin{cases} A'D'E \\ A'B'E \\ B'C'E \\ C'D'E \end{cases}$$

#### Five- and Six-Variable Maps (16/17)

• Example 3.31. Consider the function

 $G(A, B, C, D, E, F) = \Sigma m(1, 3, 6, 8, 9, 13, 14, 17, 19, 24, 25, 29, 32, 33, 34, 35, 38, 40, 46, 49, 51, 53, 55, 56, 61, 63)$ 

• There are more than three essential prime implicants.

![](_page_16_Figure_4.jpeg)

# Five- and Six-Variable Maps (17/17)

• Example 3.31 (Cont'd) The next map shows 1's covered by the first three prime implicants as don't cares.

![](_page_17_Figure_2.jpeg)

• Remember that the top and bottom layers are adjacent. The minimum expression is

G = ABDF + CD'E'F' + C'D'F + A'CE'F + B'DEF' + AB'C'D'

# Multiple Output Problems (1/14)

• If, for example, we had a problem with three inputs, *A*, *B*, and *C* and two outputs, *F* and *G*, we could treat this as two separate problems. However, if we treated this as a single system with three inputs and two outputs, we may be able to economize by sharing gates

Figure 3.1 Implementation of two functions.

![](_page_18_Figure_3.jpeg)

### Multiple Output Problems (2/14)

• Example 3.32. Consider two functions

 $F(A, B, C) = \Sigma m(0, 2, 6, 7) \qquad G(A, B, C) = \Sigma m(1, 3, 6, 7)$ 

• If we map each of these and solve them separately, we obtain

F = A'C' + AB G = A'C + AB

![](_page_19_Figure_5.jpeg)

## Multiple Output Problems (3/14)

• Example 3.32. (Cont'd) The same term (*AB*) is circled on both and can be shared. We will use as the definition for *minimum* a circuit containing the minimum number of gates, and among those with the same number of gates, the minimum number of gate inputs.

![](_page_20_Figure_2.jpeg)

## Multiple Output Problems (4/14)

#### • Example 3.33. Consider the two functions $F(A, B, C) = \Sigma m(0, 1, 6)$ $G(A, B, C) = \Sigma m(2, 3, 6)$

• Even when the two functions do not have a common prime implicants, some parts can still be shared.

![](_page_21_Figure_3.jpeg)

## Multiple Output Problems (5/14)

• Example 3.33 (Cont'd). In the top maps, we consider each function separately and obtained

F = A'B' + ABC' G = A'B + BC'

This solution requires six gates (four ANDs and two ORs) with 13 inputs

• However, as we share the term *ABC*' and obtain F = A'B' + ABC' G = A'B + ABC'

## Multiple Output Problems (6/14)

• Example 3.33 (Cont'd). As can be seen from the circuit, this only requires five gates with 11 inputs

![](_page_23_Figure_2.jpeg)

## Multiple Output Problems (7/14)

#### • Example 3.34. Consider the two functions $F(A, B, C) = \Sigma m(2, 3, 7)$ $G(A, B, C) = \Sigma m(4, 5, 7)$

• Using essential prime implicants of each function, we obtain F = A'B + BC G = AB' + AC

![](_page_24_Figure_3.jpeg)

## Multiple Output Problems (8/14)

#### • Example 3.34 (Cont'd)

We can share the term *ABC*, even though it is not a prime implicant of either function, and get a solution that requires only five gates:

F = A'B + ABC G = AB' + ABC

![](_page_25_Figure_3.jpeg)

## Multiple Output Problems (9/14)

• Example 3.35. Consider the two functions

 $F(A, B, C, D) = \Sigma m(4, 5, 6, 8, 12, 13)$  $G(A, B, C, D) = \Sigma m(0, 2, 5, 6, 7, 13, 14, 15)$ 

• The maps of these functions are shown below. In them, we have shown in pink the 1's that are included in one function and not the other

![](_page_26_Figure_4.jpeg)

#### Multiple Output Problems (10/14)

#### • Example 3.35 (Cont'd). We have

![](_page_27_Figure_2.jpeg)

leaving

F = AC'D' + A'BD' + BC'DG = A'B'D' + BC + BC'D

• With sharing, a total of 7 gates and 20 gate inputs is required. In contrast, that of no sharing requires a total of eight gates

# Multiple Output Problems (11/14)

• Example 3.35 (Cont'd). The shared version of the circuit is shown below

![](_page_28_Figure_2.jpeg)

### Multiple Output Problems (12/14)

• **Example 3.40.** Consider an example with don't cares:

 $F(A, B, C, D) = \Sigma m(2, 3, 4, 6, 9, 11, 12) + \Sigma d(0, 1, 14, 15)$  $G(A, B, C, D) = \Sigma m(2, 6, 10, 11, 12) + \Sigma d(0, 1, 14, 15)$ 

• A map of the functions, with the only prime implicant made essential by a 1 that is not shared circled, *B'D*, is shown below

![](_page_29_Figure_4.jpeg)

## Multiple Output Problems (13/14)

Example 3.40 (Cont'd). Since m<sub>11</sub> has now been covered in *F*, we must use the essential prime implicant of *G*, *AC*, to cover m<sub>11</sub>

![](_page_30_Figure_2.jpeg)

# Multiple Output Problems (14/14)

• Example 3.40 (Cont'd). Since we need the term *ABD*' for *G*, one approach is to use it for *F* also

![](_page_31_Figure_2.jpeg)