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Chapter 3 The Karnaugh Map (III) 
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 A five-variable map consists of 25=32 squares. We prefer to 

look at it as two layers of 16 squares each. Each square in the 

bottom layer corresponds to the minterm numbered 16 

more than the square above it. 
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 Example 3.27. Circle the following minterms on the 

Karnaugh map 
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 Six-variable maps are drawn as four layers of 16-square maps, 

where the first two variables determine the layer and the 

other variables specify the square within the layer 
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 To simplify a five-variable map, we first look for the essential 

prime implicants. A good staring point is to find 1’s on one 

layer for which there is a 0 in the corresponding square on 

the adjoining layer.  

 Prime implicants that cover that 1 are contained completely 

on that layer. Thus, we have a four-variable map problem. 
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 Consider the following map. 

 

 

 

 

 

 

 

 So far, we have 
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 The two 1’s remaining uncovered do have counterparts on 

the other layer. The only prime implicant that covers them is 

BDE.  The complete solution is  
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 Example 3.28. Obtain a minimum SOP form for the 

function 
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 Example 3.28 (Cont’d) The essential prime implicant on 

the second map are shown as don’t cares 
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 Example 3.28 (Cont’d) 

 

 

 

 

 

 

 

 The solution is 
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 Example 3.29. Obtain the function from the maps.  
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 Example 3.29 (Cont’d) We have 
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 Example 3.29 (Cont’d) 

 

 

 

 

 

 The two solutions are 
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 Example 3.30. Consider the function 

 

 

 A map of H is shown below with the only essential prime 

implicant, B’D (a group of eight, including four 1’s and four 

don’t cares), circled 
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 Example 3.30 (Cont’d) 
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 Example 3.30 (Cont’d) 

 

 

 

 

 

 The eight solutions are 

 



Five- and Six-Variable Maps (16/17) 

17 

 Example 3.31. Consider the function 

 

 

 There are more than three essential prime implicants. 
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 Example 3.31 (Cont’d) The next map shows 1’s covered by 

the first three prime implicants as don’t cares. 

 

 

 

 

 

 

 Remember that the top and bottom layers are adjacent. The 

minimum expression is 

 



Multiple Output Problems (1/14) 

19 

 If, for example, we had a problem with three inputs, A, B, 

and C and two outputs, F and G, we could treat this as two 

separate problems. However, if we treated this as a single 

system with three inputs and two outputs, we may be able to 

economize by sharing gates 
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 Example 3.32. Consider two functions 

 

 If we map each of these and solve them separately, we obtain  
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 Example 3.32. (Cont’d) The same term (AB) is circled on 

both and can be shared. We will use as the definition for 

minimum a circuit containing the minimum number of gates, 

and among those with the same number of gates, the 

minimum number of gate inputs.  
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 Example 3.33. Consider the two functions 

 

 Even when the two functions do not have a common prime 

implicants, some parts can still be shared. 
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 Example 3.33 (Cont’d). In the top maps, we consider each 

function separately and obtained 

 

    This solution requires six gates (four ANDs and two ORs) 

with 13 inputs 

 However, as we share the term ABC’ and obtain  
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 Example 3.33 (Cont’d). As can be seen from the circuit, 

this only requires five gates with 11 inputs 
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 Example 3.34. Consider the two functions 

 

 Using essential prime implicants of each function, we obtain 
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 Example 3.34 (Cont’d) 

    We can share the term ABC, even though it is not a prime 

implicant of either function, and get a solution that requires 

only five gates: 
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 Example 3.35. Consider the two functions 

 

 

 The maps of these functions are shown below. In them, we 

have shown in pink the 1’s that are included in one function 

and not the other 
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 Example 3.35 (Cont’d). We have 

 

 

 

 

 

     leaving  

 

 

 With sharing, a total of 7 gates and 20 gate inputs is required. 

In contrast, that of no sharing requires a total of eight gates 
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 Example 3.35 (Cont’d). The shared version of the circuit is 

shown below 
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 Example 3.40. Consider an example with don’t cares: 

 

 

 A map of the functions, with the only prime implicant made 

essential by a 1 that is not shared circled, B’D, is shown below 
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 Example 3.40 (Cont’d). Since m11 has now been covered in 

F, we must use the essential prime implicant of G, AC, to 

cover m11 
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 Example 3.40 (Cont’d). Since we need the term ABD’ for 

G, one approach is to use it for F also 

 

 

 

 

 

 

 

 

 The solution use seven gates and 17 inputs 

 


