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Chapter 8  Digital Modulation in an 

Additive White Gaussian Noise Baseband 

Channel (I) 



Introduction (1/2) 

2 

 In this chapter, we consider the transmission of the digital 

information sequence over communication channels that are 

characterized as additive white Gaussian noise (AWGN) 

channels 

 The AWGN channel is one of the simplest mathematical 

models for various physical communication channels. Such 

channels are basically analog channels, which means that the 

digital information sequence to be transmitted must be 

mapped into analog signal waveforms 
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 In this chapter, we consider baseband channels, i.e., channels 

having frequency passbands that usually includes zero 

frequency (f=0) 

 When the digital information is transmitted through a 

baseband channel, there is no need to use a carrier frequency 

for the transmission of the digitally modulated signals 

 There are many communication channels (including 

telephone channels, radio channels, and satellite channels) 

that have frequency passbands that are far removed from f=0. 

These types of channels are called bandpass channels 
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 In a digital communication system, the modulator input is 

typically a sequence of binary information digits. The 

modulator may map each information bit to be transmitted 

into one of two possible distinct signal waveforms, say s1(t) or 

s2(t) 

 A zero is represented by the transmitted signal waveform 

s1(t), and a one is represented by the transmitted signal 

waveform s2(t). This type of digital modulation is called binary 

modulation 
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 The modulator may transmit k bits (k>1) at a time by 

employing M=2k distinct signal waveforms, say sm(t), 

1≦m≦M. This type of digital modulation is called M-ary 

(nonbinary) modulation 

 We develop a vector representation of such digital signal 

waveforms 

 Suppose we have a set of M signal waveforms sm(t), 1≦m≦M, 

which are to be used for transmitting information over a 

communication channel. From the set of M waveforms, we 

first construct a set of N≦M orthonormal waveforms, where 

N is the dimension of the signal space 
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 We begin with the first waveform s1(t), which is assumed to 

have energy E1. The first waveform of the orthonormal set is 

constructed as 

                  

                                          E1 

           is simply s1(t) normalized to unit energy 

 The second waveform is constructed from s2(t) by first 

computing the projection of s2(t) onto         , which is 

 

               is subtracted from s2(t) to yield 
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 d2(t) is orthogonal to          , but it does not possess unit 

energy  

 If E2 denotes the energy in d2(t), then the energy-normalized 

waveform that is orthogonal to            is 

 

                                          E2 

                                     E2 

 The orthogonalization of the kth function leads to  
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 Note 

 

                         Ek 

    and 

 

 The orthogonalization process is continued until all the M 

signal waveforms {sm(t)} have been exhausted and N≦M 

orthonormal waveforms have been constructed 

 If at any step dk(t)=0, then there will be no new        ; hence, 

no new dimension is introduced 
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 The dimensionality N of the signal space will be equal to M if 

all the M signal waveforms are linearly independent, i.e., if 

none of the signal waveforms is a linear combination of the 

other signal waveforms 

 Example 8.1.1. Apply the Gram-Schmidt procedure to the 

set of four waveforms illustrated in the figure 
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 Example 8.1.1. (Cont’d) We have E1=2, so that  

                            . Next, we observe that c21=0, so that  

    and s2(t) are orthogonal. Therefore,                          . To 

obtain          , we compute c31=0 and c32=         . Hence, 

 

 Since d3(t) has unit energy, it follows that  
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 Example 8.1.1. (Cont’d) Finally, we find that c41=     , 

c42=0, c43=1. Hence,  

 

 s4(t) is a linear combination of          and         ; consequently, 

the dimensionality of the signal set is N=3 

 Once we have constructed the set of orthonormal waveforms 

              , we can express the M signals {sm(t)} as exact linear 

combinations of the 
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 We may write 

 

     The weighting coefficients are given as 

 

 Since the basis functions             are orthonormal, the energy 

of each signal waveform is related to the weighting 

coefficients  as follows: 

                       Em 

 On the basis of expression in Eq. (8.1.10), each signal 

waveform may be represented by the vector 

                         sm=(sm1,sm2,…,smN) 
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 The energy of the mth signal waveform is simply the square 

of the length of the vector, or, equivalently, the square of the 

Euclidean distance from the origin to the point in the N-

dimensional space 

 We can show that the inner product of two signals is 

equivalent to the inner product of their vector 

representations, i.e., 

                                                 sm  sn 

 Any N-dimensional signal can be represented geometrically 

as a point in the signal space spanned by the N orthonormal 

functions 
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 Example 8.1.2. Let us determine the vector representations 

of the four signals using the orthonormal set of functions 

derived in Example 8.1.1.  

 Since the dimensionality of the signal space is N=3, each 

signal is described by three components, which are obtained 

by projecting each of the four signal waveforms on the three 

orthonormal basis functions   

 Thus, we obtain s1                 , s2                        ,  s3 

      s4 
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 Example 8.1.2. (Cont’d) These signal vectors are shown in 

the figure 
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 The set of basis functions            obtained by the Gram-

Schmidt procedure is not unique. However, the change in the 

basis functions does not change the dimensionality of the 

space, N, the lengths (energies) of the signal vectors, or the 

inner product of any two vectors 

)}({ tn



Binary Pulse Modulation (1/1) 

17 

 We consider two different binary pulse modulation methods: 

binary pulse amplitude modulation (PAM) and binary pulse 

position modulation (PPM) 

 Assume that the information to be transmitted is a binary 

sequence that consists of zeros and ones, and occurs at the bit 

rate Rb bits/sec (bps) 
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 Binary PAM is the simplest digital modulation method. The 

information bit 1 may be represented by a pulse of amplitude 

A, and the information bit 0 may be represented by a pulse of 

amplitude –A 

 Since one signal pulse is the negative of the other, this type of 

signaling is also called binary antipodal signaling  
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 Pulses are transmitted at a bit rate Rb=1/Tb bits/sec. Tb is 

called the bit interval 

 Although the pulses are shown as rectangular, in practical 

systems the rise time and decay time are nonzero and the 

pulses are generally smoother. The pulse shape determines 

the spectral characteristics of the transmitted signal 
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 The binary PAM signal waveforms are expressed as 

                 

 Am takes one of two possible values (A for m=1, and –A for 

m=2), and gT(t) is a rectangular pulse of unit amplitude 

2,1,0),()(  mTttgAts bTmm



Binary Pulse Amplitude Modulation 

(4/8) 

21 

 The signal energy in each of the two waveforms is 

                        Eb 

 

 

 

 Each signal waveform carries one bit of information. We 

define the signal energy per bit of information as Eb  

 We have         Eb 

 For binary PAM, the signal waveforms are expressed as 
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          is the unit energy rectangular pulse 

          Eb            Eb 

 The binary PAM signal waveforms can be uniquely 

represented geometrically in one dimension (on the real line) 

as two vectors and has the amplitude    Eb 
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 We usually omit drawing the vectors from the origin, and we 

simply display the two endpoints at   Eb   and          Eb 
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 Example 8.2.1. Consider two antipodal signal waveforms 

shown in Fig. 8.8. Show that these signals have exactly the 

same geometric representations as the two rectangular pulses 

in Fig. 8.4 



Binary Pulse Amplitude Modulation 

(8/8) 

25 

 Example 8.2.1. (Cont’d) The waveforms of these signals 

may be represented as  

 

    where          is the unit energy waveform shown in Fig. 8.9, 

and          Eb            Eb . Thus, the two antipodal signal 

waveforms have exactly the same geometric signal 

representation as those shown in Fig. 8.4 
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