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Chapter 7  Analog-to-Digital 

Conversion (IV) 



Waveform Coding (1/1) 
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 Waveform coding schemes are designed to reproduce the 

waveform output of the source at the destination with as 

little distortion as possible 

 All attempts are directed at reproducing the source output at 

the destination with high fidelity. Some basic waveform 

coding methods include: 

 Pulse code modulation (PCM) 

 Differential pulse code modulation (DPCM) 

 Delta modulation (DM) 

 Adaptive delta modulation (ADM) 

 



Pulse Code Modulation (1/2) 
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 Pulse code modulation is the simplest and oldest waveform 

coding scheme. A pulse code modulator consists of three 

basic sections: a sampler, a quantizer and an encoder 

 PCM can be further divided into two types 

 Uniform PCM: the quantizer is a uniform quantizer 

 Nonuniform PCM: the quantizer is nonuniform quantizer that 

has quantization regions of various sizes 

 



Pulse Code Modulation (2/2) 
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 In PCM, we make the following assumptions: 

1. The waveform (signal) is bandlimited with a maximum of W. 

It can be reconstructed at a rate of fs=2W or higher 

2. The signal is of finite amplitude. In other words, we have, 

|x(t)|<xmax 

3. The quantization is done with a large number of quantization 

levels N, which is a power of 2 (N=2ν) 

 Usually, there exists a filter with bandwidth W prior to the 

sampler to prevent any components beyond W from 

entering the sampler. This filter is called the presampling 

filter. The sampling is done at a rate higher than the 

Nyquist rate; this allows for some guardband 



Uniform PCM (1/6) 
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 In uniform PCM, we assume that the quantizer is a uniform 

quantizer. Since the range of the input samples is [-xmax,+xmax] 

and the number of quantization levels is N, the length of each 

quantization region is given by 

 

 The quantized values in uniform PCM are chosen to be the 

midpoint of the quantization regions; therefore, the error 

                          is a random variable taking values uniformly in 

the interval (-Δ/2,+Δ/2]. In other words, 
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Uniform PCM (2/6) 
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 The distortion introduced by quantization (quantization noise) 

is therefore  

 

 

 ν is the number of bits/source sample  

 The signal-to-quantization noise ratio becomes 

                                                                           

 

 PX is the average power in each sample 

 SQNR in uniform PCM deteriorates as the dynamic range of 

the source increases  
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Uniform PCM (3/6) 
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 Assume X(t) is a wide-sense stationary process, PX can be 

found using any of the following relations: 

 

 

 

 

 Since xmax is the maximum possible value for X, we always 

have PX=E[X2]≦xmax
2. This means               (usually                ). 

From (7.4.3) we know that 3N2=3 ×4ν is an upper bound to 

the SQNR in uniform PCM 
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Uniform PCM (4/6) 
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 From (7.4.3) we can express SQNR in decibels as 

 

 

    We can see that each extra bit (increase in ν by one) increases 

the SQNR by 6 dB. This is a very useful strategy for 

estimating how many extra bits are required to achieve a 

desired SQNR 
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Uniform PCM (5/6) 
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 Example 7.4.1. What is the resulting SQNR for a signal 

uniformly distributed on [-1,1], when uniform PCM with 

256 levels is employed? 

 We have  

 

     Therefore, using xmax=1 and ν=log2256=8, we have 

      

 If a signal has a bandwidth W, then the minimum number of 

samples for perfect reconstruction of the signal is given by 

the sampling theorem, and it is equal to 2W samples/sec. 
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Uniform PCM (6/6) 
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 If the sample rate is fs, ν bits are used; therefore, a total of νfs 

bits/sec are required for transmission of the PCM signal. In 

the case of sampling at the Nyquist rate, this is equal to 2νW 

bits/sec 

 The minimum bandwidth requirement for binary 

transmission of R bits/sec (or, more precisely, R pulses/sec) 

is R/2 (will be explained in Chap. 9). Therefore, the 

minimum bandwidth requirement of a PCM system is 

 

    if sampling at the Nyquist rate, gives the minimum 

bandwidth requirement as 
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Nonuniform PCM (1/6) 
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 As long as the statistics of the input signal are close to the 

uniform distribution, uniform PCM works fine. However, in 

coding of certain signals such as speech, the input 

distribution is far from uniformly distributed 

 For a speech waveform, there exists a higher probability for 

smaller amplitude and a lower probability for larger 

amplitude 

 It makes sense to design a quantizer with more quantization 

regions at lower amplitudes and fewer quantization regions at 

larger amplitudes. The resulting quantizer will be a 

nonuniform quantizer that has quantization regions of various 

sizes 



Nonuniform PCM (2/6) 
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 The usual method for performing nonuniform quantization is 

to first pass the samples through a nonlinear element that 

compresses the large amplitudes (reduces the dynamic range 

of the signal) and then performs a uniform quantization on 

the output 

 At the receiving end, the inverse (expansion) of this 

operation is applied to obtain the sampled value. This 

technique is called companding (compressing-expanding) 



Nonuniform PCM (3/6) 
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 There are two types of companders used for speech coding. 
One is the μ-law compander, used in the United States and 
Canada; the other one is the A-law compander 

 The μ-law compander employs the logarithmic function at 
the transmitting side, where |x|≦1: 

 

 

 If μ=0, then no compression 

 The parameter μ controls the amount of compression and 
expansion. The standard PCM system in the United States 
and Canada employs a compressor with μ=255 followed by a 
uniform quantizer with 8 bits/sample 
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Nonuniform PCM (4/6) 
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 Use of a compander in this system improves the performance 

of the system by about 24 dB 



Nonuniform PCM (5/6) 
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 The second widely used logarithmic compressor is the A-law 

compander, mainly used in Europe. The characteristics of this 

compander are given by 

 

 

 

    where A is chosen to be 87.56. The performance of this 

compander is comparable to the performance of the μ-law 

compander 
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Nonuniform PCM (6/6) 
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Differential Pulse Code Modulation 

(DPCM) (1/4) 
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 PCM samples are regarded as independent with each other. 

In fact, they are correlated as long as the spectrum of the 

sampled process is flat within its bandwidth. This means that 

the previous samples give some information about the next 

sample; thus, this information can be employed to improve 

the performance of the PCM system 

 For instance, if the previous sample values were small, and 

there is a high probability that the next sample value will be 

small as well, then it is not necessary to quantize a wide 

range of values to achieve a good performance 



Differential Pulse Code Modulation 

(DPCM) (2/4) 
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 In DPCM, the difference between two adjacent samples is 

quantized. Because two adjacent samples are highly 

correlated, their difference has small variations 

 To achieve a certain level of performance, fewer levels (and 

therefore fewer bits) are required to quantize it. This means 

DPCM can achieve performance levels at lower bit rates than 

PCM 



Differential Pulse Code Modulation 

(DPCM) (3/4) 
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            : a memory to store data for one sample period delay 

 Initially, the encoder memory and the decoder memory are 

set to zeros. For instance,                      , then for all n we have 

 Note that  

 For n=0, we have                             ,                 ,   

 

 For n=1, we have  
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Differential Pulse Code Modulation 

(DPCM) (4/4) 
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 The advantage of this design is the accumulation of 

quantization noise is prevented 

 The range of variation of Yn is usually much smaller than that 

of Xn; therefore, Yn can be quantized with fewer bits 

 

 



Delta Modulation (DM) (1/6) 
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 Delta modulation is a simplified version of the DPCM system. 

In delta modulation, the quantizer is a one-bit (two-level) 

quantizer with magnitudes ±Δ  
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Delta Modulation (DM) (2/6) 
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 In delta modulation only one bit per sample is employed, so 

the quantization noise will be high unless the dynamic range 

of Yn is very low. This means that Xn and Xn-1 must have a very 

high correlation coefficient 

 To have a high correlation between Xn and Xn-1, we have to 

sample at rates much higher than the Nyquist rate. Therefore, 

in DM, the sampling rate is usually much higher than the 

Nyquist rate, but since the number of bits per sample is only 

one, the total number of bits per second required to transmit 

a waveform is lower than that of a PCM system 



Delta Modulation (DM) (3/6) 
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 A major advantage of delta modulation is the very simple 

structure of the system. At the receiving end, we have the 

following relation for the reconstruction of Xn: 

 

 Solving this equation for Xn, and assuming zero initial 

conditions, we obtain 
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Delta Modulation (DM) (4/6) 
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 This means that to obtain Xn, we only have to accumulate the 

values of Yn. If the sampled values are represented by 

impulses, the accumulator will be a simple integrator. This 

simplifies the block diagram of a DM system, as shown in Fig. 

7.13  
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Delta Modulation (DM) (5/6) 
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 Large values of Δ cause the modulator to follow rapid 

changes in the input signal; but cause excessive quantization 

noise when the input changes slowly. This case is shown in Fig. 

7.14. For large Δ, when the input varies slowly, a large 

quantization noise occurs; this is known as granular noise 



Delta Modulation (DM) (6/6) 
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 The case of a too small Δ is shown in Fig. 7.15. In this case, 

we have a problem with rapid changes in input. This type of 

distortion is called slope overload distortion 

 



Adaptive Delta Modulation (ADM) (1/2) 
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 If the input tends to change rapidly, the step size must be 

large so that the output can follow the input quickly and no 

slope overload distortion results 

 When the input is slowly varying, the step size changed to a 

small value to prevent granular noise as shown in Fig. 7.16 



Adaptive Delta Modulation (ADM) (2/2) 
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 If the two successive outputs have the same sign, the step size 

should be increased; if they are of opposite signs, it should be 

decreased 

 A particularly simple rule to change the step size is given by 

 

    where εn is the output of the quantizer before being scaled by 

the step size and K is some constant larger than one 

 It has been verified that in the 20-60 kbps range, with a 

choice of K=1.5, the performance of adaptive delta 

modulation systems is 5-10 dB better than the performance 

of delta modulation when applied to speech sources 
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