Chapter 7 Analog-to-Digital

Conversion (ll)




Scalar Quantization (1/10)

® In scalar quantization, each sample is quantized into one of a
finite number of levels, which is then encoded into a binary

representation

® The quantization process is a rounding process; each sampled
signal point is rounded to the “nearest” value from a finite set

of possible quantization levels

® The set of real numbers R is partitioned into N disjoint
subset denoted by &, | =k= N (cach called a quantization
region). Corresponding to eagh subset ?/Zk, a representation
point (or quantization level) x, is chosen, which is usually

belongs to R,




Scalar Quantization (2/10)

* If the sampled signal at time I, X, belongs to &,, then it is

represented by Xy, which is the quantized version of X;

® Xk is represented by a binary sequence and transmitted. This

step is called encoding

® Since there are N possibilities for the quantized levels, log,N
bits are enough to encode these levels into binary sequence.

We always assume that N is a power of 2

® The number of bits required to transmit each source output
is R=log,N bits

® The price paid for representing (rounding) every sample is

the introduction of distortion
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Figure 7.3 Example of an 8-level quantization scheme.
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* The quantization function Q is defined by
Q(x)=xk for all xe&,

® We can define the average distortion resulting from
quantization. A popular measure Aof distortion is the squared

error distortion defined as (x — xx)?

® Xis t/l\le sampled signal value and Xk is the quantized value,
=Q(x)

o If we are using the squared error dlstortlon measure, then

d (%, %) = (X~ Q(X))° =X

Let X be a random variable, so are X and X .The average

~

distortion is given by

N

D =E[d(X, X)]=E(X -Q(X))*
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* Example 7.2.1. The source X(z) is a stationary Gaussian

source with mean zero and power spectral density

S (1) :{2, | f <100 I_—Iz.
0, otherwise
The source is sampled at the Nyquist rate and each sample is
quantized using the 8-level quantizer which is shown in Fig.
7.3.This tigure has a;,=-60, a,=-40, a;=-20, a,=-0, a;=20,

N

a6_4-0 a7 60 and X1 =—/70, X2 =50, x3 =—-30, X4 =10,

=10, Xs =30, X7 50, xs = 70. What is the resulting
dlstortlon and bit rate?

>




Scalar Quantization (6/10)

Example 7.2.1. (Cont’d) The sampling frequency is =200
Hz. Each sample is a zero-mean Gaussian random variable

with variance

5 2 00 100
o2 =E(X.’)=R, (1) |T:0=j_ S, (f)df = 2df =400

—100

Since each sample is quantized into 8 levels, log,8=3 bits are
sufficient to represent (encode) the sample; therefore, the

resulting rate is

R =3f, =600 bits/sec

To find the distortion, we have to evaluate E(X — X)? for

each sample. We have

D=E(X -X)* =] (x-Q()* fy (x)dx,
where fy(X) is the PDF of the random variable X




Scalar Quantization (7/10)

* Example 7.2.1. (Cont’d) We have
D=3 jRi (x—Q(x))? f, (x)dx,

or equivalently,
D= jw (x—x1)? f ()dx+ > j (x—xi)? f, (X)dx
. o i
+ f (x —xs)* f, (X)dXx,

where
1

f, (X)=
< (%) 27400
We obtain D=33.38

_x2
@ 800
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* Example 7.2.1. (Cont’d) If we were to use zero bits per
source output, then the best strategy would be to set the
reconstructed signal to zero. In this case, we have a distortion
of D=E(X-0)’=02=400

® This quantization scheme and transmission of 3 bits per

source output has enabled us to reduce the distortion to

33.38, which is a factor of 11.98 reduction or 10.78 dB




Scalar Quantization (9/10)

® We choose the mean squared distortion E(X-Q(X))?, or

quantization noise as the measure of performance

® A more meaningful measure of performance is a normalized
version of the quantization noise, and it is normalized with

respect to the power of the original signal

® The signal-to-quantization noise ratio (SQNR) is defined by

2
SQNR = —=X°)
E(X —Q(X))
E(X?) is the signal power. E(X-Q(X))” is the quantization noise

pOWGI’




Scalar Quantization (10/10)

* Example 7.2.2. Determine the SQNR for the quantization

scheme given in Example 7.2.1.

® From Example 7.2.1, we have P,=400 and D=33.38.
Therefore,

SQNR=P,/D=11.98=10.78 dB




Uniform Quantization (1/5)

® Uniform quantizers are the simplest examples of scalar

quantizers
® The entire real line is partitioned into N regions

* All regions except R, and R are of equal length A. This
means that for all 1 =1=N-2, we have a;, ;-a;=A
® [t is further assumed that quantization levels are at a

distance of A/2 from the boundaries a,,a,,...,a,,




Uniform Quantization (2/5)

® In a uniform quantizer, the mean squared error distortion is

given by

D= f (= (a1 — A2 fx(x)dx

N-=-2 ar+i A
Y[ @ in - a2 frods
— Ja+i-Da

+ f x — (a; + (N —=2)A + A2 fy(x)dx.  (1.2.7)
ai+(N—=2)A

* Dis a function of two design parameters, a;, and A. In order
to design the optimal uniform quantizer, we have to
differentiate D with respect to these variables and find the
values that minimize D

(-




Uniform Quantization (3/5)

® Minimization of distortion is generally a tedious task and is
done mainly by numerical techniques. Table 7.1 gives the
optimal quantization level spacing for a zero-mean unit-
variance Gaussian random variable. The last column in the

table gives the entropy of the quantizer
* Entropy is deflned as
H(x) = Z Py log (- )
, p; denotes the probablhty of the ith region




Uniform Quantization (4/5)

TABLE 7.1 OPTIMAL UNIFORM QUANTIZER FOR A GAUSSIAN

SOURCE

Number Output Output-level Mean-squared

) . Entropy
Levels Spacing Error H (%)

N A D ‘
1 o 1.000 0.0
2 1.596 0.3634 1.000
3 1.224 0.1902 1.536
4 0.9957 0.1188 1.904
5 0.8430 0.08218 2.183
6 0.7334 0.06065 2.409
7 0.6508 0.04686 2.598
8 0.5860 0.03744 2.761
9 0.5338 0.03069 2.904
10 0.4908 0.02568 3.032
11 0.4546 0.02185 3.148
12 0.4238 0.01885 3.253
13 0.3972 0.01645 3.350
14 0.3739 0.01450 3.440
15 0.3534 0.01289 3.524
16 0.3352 0.01154 3.602
17 0.3189 0.01040 3.676
18 0.3042 0.009430 3.746
19 0.2909 0.008594 3.811
20 0.2788 0.007869 3.874




21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

0.2678
0.2576
(0.2482
0.2396

0.2315
10.2240

0.2171
0.2105
0.2044
0.1987
0.1932
0.1881
0.1833
0.1787
0.1744
0.1703

Uniform Quantization (5/5)

0.007235
0.006678
0.006185
0.005747
0.005355
0.005004
0.004687
0.004401
0.004141
0.003905
0.003688
0.003490
0.003308
0.003141
0.002986
0.002843

3.933
3.990

4.045

4.097
4.146
4.194
4.241
4.285
4.328
4.370
4.410
4.449
4.487
4.524
4.560
4.594

@ From Max (1960); © IEEE.




