Chapter 2 Combinational Systems (Il)

-,

From the Truth Table to Algebraic
Expressions (1/9)
® Consider a two-variable truth table shown inTable 2.11

e What the table says is that Table 2.11 A two-variable
truth table.

f=ab+ ab + ;

I
0

f
0
1
|

® fcan also be represented by using minterms, which mean the
terms that include all of the variables of the system inputs.
Minterms are often referred to by number, by just converting

the binary number in the row of the truth table to decimal

From the Truth Table to Algebraic

Expressions (2/9)

® We can also represent f into the following two forms:

fla, b) = m, + m, +
fla, b) = 2m(1, 2, 2)

* Example 2.7. Represent fand f” in terms of 4, B, and C.
Table 2.12 Minterms.

ABC

~h

~h

000
001
010
011
100
101
110
111

[T i S N N R N

- 4= OO0 OO0 o <+

ABC Minterm Number
000 ABC 0
001 ABC 1
010 ABC 2
011 ABC 3
100 AB'C 4
101 AB'C d
110 ABC’ 6
111 ABC 7

From the Truth Table to Algebraic
Expressions (3/9)

* Example 2.7 (Cont’d) For a specific function, those terms
for which the function is 1 are used to form an SOP

expression for f

® Those terms for which the function is O are used to form an
SOP expression for f7. We can then complement f to form a
POS expression for f

e We have
flA, B, C) = Sm(1, 2, 3, 4, 5)
— A'B'C + A'BC' + A'BC + AB'C’ + AB'C
and
f(A, B, C) = =m0, 6, 7)
— r I r r _I_
@ A'B'C' + ABC' + ABC

From the Truth Table to Algebraic
Expressions (4/9)

° Example 2.7 (Cont’d) We can then complement f” to geta

sum of maxterms
f=(Ff)=A+B+CA"+B"+C)A" + B" + C)
® In most cases, including this one, the sum of minterms

expression is not a minimum sum of products expression

* We could reduce ffrom 5 terms with 15 literals to either of
two functions with 3 terms and 6 literal
f=A'B'C+ A'BC" + A'BC + +
=A'B'C+A'B + [P9a, P9a]
=A'C+ A'B + AB’
=B'C+ A'B + AB’

-,

From the Truth Table to Algebraic
Expressions (5/9)

* Example 2.7 (Cont’d) We can reduce f” from 3 terms with
9 literals to 2 terms with 5 literals. Using P9a:
ff=A'B'C"+ AB
* Using P11, we can then obtain the minimum POS expression

for f

f=A+B+C)A"+B')

From the Truth Table to Algebraic
Expressions (6/9)
* Example 2.8 f(a, b, ¢) = Zm(1, 2, 5) + Zd(0, 3)

implies that minterms 1, 2, and 5 are included in the

function and that O and 3 are don’t cares. The truth table is as

follows:
abc f
000 X
001 1
010 1
011 X
100 0
101 1
110 0
111 0

From the Truth Table to Algebraic

Expressions (7/9)

* Question: How many different functions can be
formed for n input variables?

* Answer: 2°.The details are as follows:

® For two variables, there are 16 possible truth tables, resulting
in 16 different functions. The truth table of Table 2.13 shows

all of these functions.

Table 2.13 All two-variable functions.

a b\ h L £ 4 K & H K & he by hy L hy
0o 0/0 0O 0O 0O OO T1 1 1 1 1 1 1 1
o 1/0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0of0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 10 1.0 1.0 1 0 1 0 1 0 1 0 1 0 1

From the Truth Table to Algebraic
Expressions (8/9)

* Question: (Cont’d) The set of functions, written in

minimum SOP forms, are

=70 fy=a'b+ ab’ fi,=a

fy = ab L=a+b fi=a + b
f, = ab' fg=a'b fi,=a + 0
;= a fy=a'b" + ab fis =
fi=ab fio= '

t=0>b fiy=a+ b

* For n input variables, the truth table has 2" rows, and thus,
we can choose any 2"-bit number for a column. Thus, there

are 22 different functions of n input variables

(-,

From the Truth Table to Algebraic
Expressions (9/9)
* Question: (Cont’d) The number of functions can be huge

if n is large.

Table 2.14 Number of
functions of n

variables.
Variables Terms
1 4
2 16
3 256
4 65,536
5 4,294 .967,296

NAND, NOR, and Exclusive-OR Gates
(1/10)
* We will introduce three other commonly used types of gates,

the NAND, the NOR, and the Exclusive-OR gates
e The NAND gate (NOT-AND) is commercially available in

several sizes, typically two-, three-, four-, and eight-input

varieties
Figure 2.12 NAND gates.

a — W —
Bl
b — V4

Figure 2.13 Alternative symbol
for NAND.

a
a + b’ = (ab)’
@ bD

NAND, NOR, and Exclusive-OR Gates
(2/10)

® The NOR gate (NOT-OR) uses the symbols shown in Fig.

2.14
Figure 2.14 Symbols for NOR gate.

a a —dgd
(@a+ b)’ ab’
b b —oO

* We could implement gates with more than two inputs using
NANDs. We could also implement AND, OR, and NOT
gates using only NORs. These operators are said to be

functionally complete

NAND, NOR, and Exclusive-OR Gates

(3/10)

Figure 2.15 Functional completeness of NAND.

(ab)’

Figure 2.16 NAND gate implementation.

y—

y.l'

55

B
Bl
Bl

B
D

_Do—a”+b"=a+b

@ * We havef:X’)/—I-X)/’-I-XZ

s
B
s

B

(-

NAND, NOR, and Exclusive-OR Gates
(4/10)

e A better NAND gate implementation of Fig. 2.16 is shown in
Fig. 2.17

Figure 2.17 Better NAND gate
implementation.

B

s[ss

e All of the AND and OR gates of the original circuit can be
replaced by NANDs. The output tunction is unchanged.

NAND, NOR, and Exclusive-OR Gates
(5/10)

® The process to transform a circuit consisting of AND and OR
gates to all NANDs can be simplified such that
1. The output of the circuit comes from an OR

2. The inputs to all OR gates come either from the system
input or from the output of an AND

3. The inputs to all AND gates come either from the system
input or from the output of an OR

NAND, NOR, and Exclusive-OR Gates
(6/10)

* Fig. 2.18 shows the double NOT gate approach to transtorm
finto an all NAND system.

Figure 2.18 Double NOT gate
approach.

L)
L = >
D

NAND, NOR, and Exclusive-OR Gates
(7/10)

® The dual approach to transform a circuit consisting of AND
and OR gates to all NOR gates can be simplified such that
1. The output of the circuit comes from an AND

2. The inputs to all OR gates come either from the system
input or from the output of an AND

3. The inputs to all AND gates come either from the system
input or from the output of an OR

NAND, NOR, and Exclusive-OR Gates
(8/10)

L Example 2.13. g:(x-l—)/’)(x’+)/)(x’+z’) 1S implemented as
follows where all gates are NOR gates.

X

y

)

O

NAND, NOR, and Exclusive-OR Gates
(9/10)

® The Exclusive-OR gate implements the expression
a’b+ab’
which is written as a® b, is 1 it a=1 (and b=0) or if b=1
(and a=0), but not both a=1 and b=1
* Exclusive-NOR gate is just an Exclusive-OR with a NOT on
the output and produces the function
(@@ b)) =a'b + ab.
Figure 2.20 (a) An Exclusive-
OR gate. (b) An

Exclusive-NOR
gate.

i IS IS
(a)

(b)

NAND, NOR, and Exclusive-OR Gates
(10/10)

® Exclusive-NOR is referred to as a comparator, since the

Exclusive-NOR is 1 if a=b, and is O if a#b
e A list of some common NAND, NOR, and Exclusive-OR

integrated circuit packages that we may encounter in the

laboratory is as follows:

7400 4 (quadruple) two-input NAND gates

7410 3 (triple) three-input NAND gates

7420 2 (dual) four-input NAND gates

7430 1 eight-input NAND gate

7402 4 (quadruple) two-input NOR gates

7427 3 (triple) three-input NOR gates

7486 4 (quadruple) two-input Exclusive-OR gates

4 N
Simplification of Algebraic Expressions

(1/6)
® Switching algebra property 12:
Pl12a. a+ ab=a P12b. ala+ b) = a
® Proof of P12a:
atab=a(l+b)=a * 1=a
* Proof of P12b:
a(a+b)=a * atab=a+ab=a

Simplification of Algebraic Expressions

(2/6)

° Example 2.15. Simplify X)/Z—I-X’)/-I-X_’)/’.
xXyz + x'y + x'y'
= XyZ + X’
= X'+ yz

wherea =x',a’' =x,and b = yz

™

Simplification of Algebraic Expressions

(3/6)

® The operator consensus (indicated by the symbol ¢) is

defined as follows:

® For any two product terms where exactly one variable
appears uncomplemented in one and complemented in the
other, the consensus is defined as the product of the
remaining literals. If no such variable exists or if more than
one such variable exists, then the consensus is undefined. If
we write one term as at, and the second as a’t, (where ¢, and
t, represent product terms), then, if the consensus is defined,

Simplification of Algebraic Expressions

(4/6)

* Example 2.19.
ab'c¢a'd=>b'cd
ab’'c ¢ a’'cd =b'cd
abc’ ¢ bed' = abd’
b'c'd ¢b'cd =b'd
abc’ ¢ bc'd = undefined—no such variable

a'bd ¢ ab’'cd = undefined—two variables, a and b
® We then have the following property that is useful in reducing
functions.

Pl13a. at, + a't, + (t, = at; + a't,
P13b. (a + f)(@ + 6)(f; +) = (a+)@ + &)

e P13a states that the consensus term is redundant and can be
removed from an SOP expression. P1 3b is in POS expression of

@ P13a

Simplification of Algebraic Expressions

(5/6)

® Proof of P13a by algebra

at, + a't,= (at; + ant) + (a't, + a',t)
= at, + a't, + (at;t, + a't;t)

= afy + a't, + 4,
® Proof of P13a by truth table
Table 2.15 Consensus.

a t at, a't RHS L, LHS
0 0 O 0 0 0 0 0
0 0 1 0 1 1 0 1
0 1 O 0 0 0 0 0
0 1 1 0 1 1 1 1
1 0 O 0 0 0 0 0
10 1 0 0 0 0 0
1 1 0 1 0 1 0 1
I 1 1 1 0 1 1 1

™

Simplification of Algebraic Expressions
(6/6)

© Example 2.21. Simplifiy g=bc’+abd+acd
® The only consensus term defined is

bc' ¢ acd = abd

Property 13 now allows us to remove the consensus term.

Thus,
g = bc' + acd

™

4 N
Manipulation of Algebraic Functions

and NAND Gate Implementations (1/7)

® If we have an SOP expression and need to expand it to sum of

minterms, we have two operations.

1. First, we can create a truth table and produce a sum of
minterms. This approach will work for an expression in any

format.

2. The other approach is to add variables to a term until all terms

become minterms
o Example 2.26.
g=X"+xyz=xXy+xy + xyz
=X'vz+X'yvz' + X'y'z+ X'y'Z2" + xyz
g, v.z2)=2m(3,2,1,0,7)=2m(0, 1, 2, 3, 7)

@ Note minterm numbers are usually written in numeric order /

4 N
Manipulation of Algebraic Functions

and NAND Gate Implementations (2/7)

® One other property
Pl4a. ab+ a'c= (a+ o (a + b
® Proof of P14a.
RHS=aa’+ab+a’c+bc
—ab+a’c+bc
—ab+a’c=LHS

Manipulation of Algebraic Functions
and NAND Gate Implementations (3/7)

Example 2.34. Consider the design of a 1-bit full adder. The
two binary input are represented as a and b, while the carry
input is represented as c. From the truth table, we know the

outputs s and c . are

s=a'b'c+ a'bc’ +ab’c’ + abc

Cout = bC + ac + ab
Although s and ¢, , are in minimum SOP form, we can
manipulate the algebra to reduce the gate requirements by
reorganizing sand ¢, as

s=c@b"+ ab)+c'lab’ + a'b)
Cout = Cl@ + b) + ab

™~

Manipulation of Algebraic Functions
and NAND Gate Implementations (4/7)

° Example 2.34. (Cont’d) Returning to the expression for

sum and carry
s=cladb) +c'la®b)=c®D@dDb)
Cot = Cl@®b)+ ab
* Note we use a little trick that is not obvious from any of the
properties. The difference between a+b and a@Db is that the

former is 1 when both a and b are 1, but the latter is not. But

the expression for c¢_ . is 1 for a=b=1 because of the ab term.

Manipulation of Algebraic Functions
and NAND Gate Implementations (5/7)

* Example 2.34. (Cont’d) We have

Ei)D?DS

B
B

™

4 N
Manipulation of Algebraic Functions

and NAND Gate Implementations (6/7)

° Example 2.34. (Cont’d) The XOR gate can be replaced by
a set of four NAND gates.

B
| }-}3 g s
,_.; B

B

[

Manipulation of Algebraic Functions
and NAND Gate Implementations (7/7)

* Example 2.34. (Cont’d) Note the four pink NAND gates

can be turther simplified.

Ba

: By

Ba

DD .

C—e

1

vy

™

|

