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Chapter 2 Combinational Systems (II) 
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 Consider a two-variable truth table shown in Table 2.11 

 What the table says is that 

 

 

 

 

 f can also be represented by using minterms, which mean the 

terms that include all of the variables of the system inputs. 

Minterms are often referred to by number, by just converting 

the binary number in the row of the truth table to decimal 
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 We can also represent f into the following two forms: 

 

 

 Example 2.7. Represent f and f’ in terms of A, B, and C. 
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 Example 2.7 (Cont’d) For a specific function, those terms 

for which the function is 1 are used to form an SOP 

expression for f 

 Those terms for which the function is 0 are used to form an 

SOP expression for f’. We can then complement f’ to form a 

POS expression for f 

 We have 

 

 

     and 
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 Example 2.7 (Cont’d) We can then complement f’ to get a 

sum of maxterms 

 

 In most cases, including this one, the sum of minterms 

expression is not a minimum sum of products expression 

 We could reduce f from 5 terms with 15 literals to either of 

two functions with 3 terms and 6 literal 
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 Example 2.7 (Cont’d) We can reduce f’ from 3 terms with 

9 literals to 2 terms with 5 literals. Using P9a: 

 

 Using P11, we can then obtain the minimum POS expression 

for f 
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 Example 2.8 

    implies that minterms 1, 2, and 5 are included in the 

function and that 0 and 3 are don’t cares. The truth table is as 

follows: 
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 Question: How many different functions can be 

formed for n input variables?  

 Answer:       . The details are as follows: 

 For two variables, there are 16 possible truth tables, resulting 

in 16 different functions. The truth table of Table 2.13 shows 

all of these functions. 

 

n22
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 Question: (Cont’d) The set of functions, written in 

minimum SOP forms, are 

 

 

 

 

 

 For n input variables, the truth table has 2n rows, and thus, 

we can choose any 2n-bit number for a column. Thus, there 

are       different functions of n input variables 

 

n22
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 Question: (Cont’d) The number of functions can be huge 

if n is large. 
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 We will introduce three other commonly used types of gates, 

the NAND, the NOR, and the Exclusive-OR gates 

 The NAND gate (NOT-AND) is commercially available in 

several sizes, typically two-, three-, four-, and eight-input 

varieties 
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 The NOR gate (NOT-OR) uses the symbols shown in Fig. 

2.14 

 

 

 

 We could implement gates with more than two inputs using 

NANDs. We could also implement AND, OR, and NOT 

gates using only NORs. These operators are said to be 

functionally complete 
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 We have f=x’y+xy’+xz 
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 A better NAND gate implementation of Fig. 2.16 is shown in 

Fig. 2.17 

 

 

 

 

 

 All of the AND and OR gates of the original circuit can be 

replaced by NANDs. The output function is unchanged. 
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 The process to transform a circuit consisting of AND and OR 

gates to all NANDs can be simplified such that 

1. The output of the circuit comes from an OR 

2. The inputs to all OR gates come either from the system 

input or from the output of an AND 

3. The inputs to all AND gates come either from the system 

input or from the output of an OR 
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 Fig. 2.18 shows the double NOT gate approach to transform 

f into an all NAND system. 
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 The dual approach to transform a circuit consisting of AND 

and OR gates to all NOR gates can be simplified such that 

1. The output of the circuit comes from an AND 

2. The inputs to all OR gates come either from the system 

input or from the output of an AND 

3. The inputs to all AND gates come either from the system 

input or from the output of an OR 
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 Example 2.13. g=(x+y’)(x’+y)(x’+z’) is implemented as 

follows where all gates are NOR gates. 
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 The Exclusive-OR gate implements the expression 

     a’b+ab’ 

    which is written as         , is 1 if a=1 (and b=0) or if b=1 

(and a=0), but not both a=1 and b=1 

 Exclusive-NOR gate is just an Exclusive-OR with a NOT on 

the output and produces the function 
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 Exclusive-NOR is referred to as a comparator, since the 

Exclusive-NOR is 1 if a=b, and is 0 if a≠b 

 A list of some common NAND, NOR, and Exclusive-OR 

integrated circuit packages that we may encounter in the 

laboratory is as follows: 
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 Switching algebra property 12: 

 

 Proof of P12a: 

    a+ab=a(1+b)=a．1=a 

 Proof of P12b: 

    a(a+b)=a．a+ab=a+ab=a 
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 Example 2.15. Simplify xyz+x’y+x’y’. 
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 The operator consensus (indicated by the symbol   ) is 

defined as follows: 

 For any two product terms where exactly one variable 

appears uncomplemented in one and complemented in the 

other, the consensus is defined as the product of the 

remaining literals. If no such variable exists or if more than 

one such variable exists, then the consensus is undefined. If 

we write one term as at1 and the second as a’t2 (where t1 and 

t2 represent product terms), then, if the consensus is defined,  
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 Example 2.19.  

 

 

 

 

 

 We then have the following property that is useful in reducing 
functions. 

 

 

 P13a states that the consensus term is redundant and can be 
removed from an SOP expression. P13b is in POS expression of 
P13a 
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 Proof of P13a by algebra 

 

 

 Proof of P13a by truth table 



Simplification of Algebraic Expressions 

(6/6) 

26 

 Example 2.21. Simplifiy g=bc’+abd+acd 

 The only consensus term defined is 

 

    Property 13 now allows us to remove the consensus term. 

Thus, 

 



Manipulation of Algebraic Functions 

and NAND Gate Implementations (1/7) 

27 

 If we have an SOP expression and need to expand it to sum of 

minterms, we have two operations.  

1. First, we can create a truth table and produce a sum of 

minterms. This approach will work for an expression in any 

format.  

2. The other approach is to add variables to a term until all terms 

become minterms 

 Example 2.26.  

 

 

 

        Note minterm numbers are usually written in numeric order        
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 One other property 

 

 Proof of P14a.  

               RHS=aa’+ab+a’c+bc 

                       =ab+a’c+bc 

                       =ab+a’c=LHS 
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 Example 2.34. Consider the design of a 1-bit full adder. The 

two binary input are represented as a and b, while the carry 

input is represented as c. From the truth table, we know the 

outputs s and cout are   

 

 

 Although s and cout are in minimum SOP form, we can 

manipulate the algebra to reduce the gate requirements by 

reorganizing  s and cout as 
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 Example 2.34. (Cont’d) Returning to the expression for 

sum and carry 

 

 

 Note we use a little trick that is not obvious from any of the 

properties. The difference between a+b and           is that the 

former is 1 when both a and b are 1, but the latter is not. But 

the expression for cout is 1 for a=b=1 because of the ab term. 

 

ba
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 Example 2.34. (Cont’d) We have 
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 Example 2.34. (Cont’d) The XOR gate can be replaced by 

a set of four NAND gates. 
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 Example 2.34. (Cont’d) Note the four pink NAND gates 

can be further simplified.  


