
1

Chapter 2 Combinational Systems (II)

From the Truth Table to Algebraic

Expressions (1/9)

2

 Consider a two-variable truth table shown in Table 2.11

 What the table says is that

 f can also be represented by using minterms, which mean the

terms that include all of the variables of the system inputs.

Minterms are often referred to by number, by just converting

the binary number in the row of the truth table to decimal

From the Truth Table to Algebraic

Expressions (2/9)

3

 We can also represent f into the following two forms:

 Example 2.7. Represent f and f’ in terms of A, B, and C.

From the Truth Table to Algebraic

Expressions (3/9)

4

 Example 2.7 (Cont’d) For a specific function, those terms

for which the function is 1 are used to form an SOP

expression for f

 Those terms for which the function is 0 are used to form an

SOP expression for f’. We can then complement f’ to form a

POS expression for f

 We have

 and

From the Truth Table to Algebraic

Expressions (4/9)

5

 Example 2.7 (Cont’d) We can then complement f’ to get a

sum of maxterms

 In most cases, including this one, the sum of minterms

expression is not a minimum sum of products expression

 We could reduce f from 5 terms with 15 literals to either of

two functions with 3 terms and 6 literal

From the Truth Table to Algebraic

Expressions (5/9)

6

 Example 2.7 (Cont’d) We can reduce f’ from 3 terms with

9 literals to 2 terms with 5 literals. Using P9a:

 Using P11, we can then obtain the minimum POS expression

for f

From the Truth Table to Algebraic

Expressions (6/9)

7

 Example 2.8

 implies that minterms 1, 2, and 5 are included in the

function and that 0 and 3 are don’t cares. The truth table is as

follows:

From the Truth Table to Algebraic

Expressions (7/9)

8

 Question: How many different functions can be

formed for n input variables?

 Answer: . The details are as follows:

 For two variables, there are 16 possible truth tables, resulting

in 16 different functions. The truth table of Table 2.13 shows

all of these functions.

n22

From the Truth Table to Algebraic

Expressions (8/9)

9

 Question: (Cont’d) The set of functions, written in

minimum SOP forms, are

 For n input variables, the truth table has 2n rows, and thus,

we can choose any 2n-bit number for a column. Thus, there

are different functions of n input variables

n22

From the Truth Table to Algebraic

Expressions (9/9)

10

 Question: (Cont’d) The number of functions can be huge

if n is large.

NAND, NOR, and Exclusive-OR Gates

(1/10)

11

 We will introduce three other commonly used types of gates,

the NAND, the NOR, and the Exclusive-OR gates

 The NAND gate (NOT-AND) is commercially available in

several sizes, typically two-, three-, four-, and eight-input

varieties

NAND, NOR, and Exclusive-OR Gates

(2/10)

12

 The NOR gate (NOT-OR) uses the symbols shown in Fig.

2.14

 We could implement gates with more than two inputs using

NANDs. We could also implement AND, OR, and NOT

gates using only NORs. These operators are said to be

functionally complete

NAND, NOR, and Exclusive-OR Gates

(3/10)

13

 We have f=x’y+xy’+xz

NAND, NOR, and Exclusive-OR Gates

(4/10)

14

 A better NAND gate implementation of Fig. 2.16 is shown in

Fig. 2.17

 All of the AND and OR gates of the original circuit can be

replaced by NANDs. The output function is unchanged.

NAND, NOR, and Exclusive-OR Gates

(5/10)

15

 The process to transform a circuit consisting of AND and OR

gates to all NANDs can be simplified such that

1. The output of the circuit comes from an OR

2. The inputs to all OR gates come either from the system

input or from the output of an AND

3. The inputs to all AND gates come either from the system

input or from the output of an OR

NAND, NOR, and Exclusive-OR Gates

(6/10)

16

 Fig. 2.18 shows the double NOT gate approach to transform

f into an all NAND system.

NAND, NOR, and Exclusive-OR Gates

(7/10)

17

 The dual approach to transform a circuit consisting of AND

and OR gates to all NOR gates can be simplified such that

1. The output of the circuit comes from an AND

2. The inputs to all OR gates come either from the system

input or from the output of an AND

3. The inputs to all AND gates come either from the system

input or from the output of an OR

NAND, NOR, and Exclusive-OR Gates

(8/10)

18

 Example 2.13. g=(x+y’)(x’+y)(x’+z’) is implemented as

follows where all gates are NOR gates.

NAND, NOR, and Exclusive-OR Gates

(9/10)

19

 The Exclusive-OR gate implements the expression

 a’b+ab’

 which is written as , is 1 if a=1 (and b=0) or if b=1

(and a=0), but not both a=1 and b=1

 Exclusive-NOR gate is just an Exclusive-OR with a NOT on

the output and produces the function

NAND, NOR, and Exclusive-OR Gates

(10/10)

20

 Exclusive-NOR is referred to as a comparator, since the

Exclusive-NOR is 1 if a=b, and is 0 if a≠b

 A list of some common NAND, NOR, and Exclusive-OR

integrated circuit packages that we may encounter in the

laboratory is as follows:

Simplification of Algebraic Expressions

(1/6)

21

 Switching algebra property 12:

 Proof of P12a:

 a+ab=a(1+b)=a．1=a

 Proof of P12b:

 a(a+b)=a．a+ab=a+ab=a

Simplification of Algebraic Expressions

(2/6)

22

 Example 2.15. Simplify xyz+x’y+x’y’.

Simplification of Algebraic Expressions

(3/6)

23

 The operator consensus (indicated by the symbol) is

defined as follows:

 For any two product terms where exactly one variable

appears uncomplemented in one and complemented in the

other, the consensus is defined as the product of the

remaining literals. If no such variable exists or if more than

one such variable exists, then the consensus is undefined. If

we write one term as at1 and the second as a’t2 (where t1 and

t2 represent product terms), then, if the consensus is defined,

Simplification of Algebraic Expressions

(4/6)

24

 Example 2.19.

 We then have the following property that is useful in reducing
functions.

 P13a states that the consensus term is redundant and can be
removed from an SOP expression. P13b is in POS expression of
P13a

Simplification of Algebraic Expressions

(5/6)

25

 Proof of P13a by algebra

 Proof of P13a by truth table

Simplification of Algebraic Expressions

(6/6)

26

 Example 2.21. Simplifiy g=bc’+abd+acd

 The only consensus term defined is

 Property 13 now allows us to remove the consensus term.

Thus,

Manipulation of Algebraic Functions

and NAND Gate Implementations (1/7)

27

 If we have an SOP expression and need to expand it to sum of

minterms, we have two operations.

1. First, we can create a truth table and produce a sum of

minterms. This approach will work for an expression in any

format.

2. The other approach is to add variables to a term until all terms

become minterms

 Example 2.26.

 Note minterm numbers are usually written in numeric order

Manipulation of Algebraic Functions

and NAND Gate Implementations (2/7)

28

 One other property

 Proof of P14a.

 RHS=aa’+ab+a’c+bc

 =ab+a’c+bc

 =ab+a’c=LHS

Manipulation of Algebraic Functions

and NAND Gate Implementations (3/7)

29

 Example 2.34. Consider the design of a 1-bit full adder. The

two binary input are represented as a and b, while the carry

input is represented as c. From the truth table, we know the

outputs s and cout are

 Although s and cout are in minimum SOP form, we can

manipulate the algebra to reduce the gate requirements by

reorganizing s and cout as

Manipulation of Algebraic Functions

and NAND Gate Implementations (4/7)

30

 Example 2.34. (Cont’d) Returning to the expression for

sum and carry

 Note we use a little trick that is not obvious from any of the

properties. The difference between a+b and is that the

former is 1 when both a and b are 1, but the latter is not. But

the expression for cout is 1 for a=b=1 because of the ab term.

ba

Manipulation of Algebraic Functions

and NAND Gate Implementations (5/7)

31

 Example 2.34. (Cont’d) We have

Manipulation of Algebraic Functions

and NAND Gate Implementations (6/7)

32

 Example 2.34. (Cont’d) The XOR gate can be replaced by

a set of four NAND gates.

Manipulation of Algebraic Functions

and NAND Gate Implementations (7/7)

33

 Example 2.34. (Cont’d) Note the four pink NAND gates

can be further simplified.

