
1

Chapter 2 Combinational Systems (I)

Chapter Outline (1/2)

2

 The Design Process for Combinational Systems

 Switching Algebra

 Implementation of Functions with AND, OR, and NOT

Gates

 The Complement

 From the Truth Table to Algebraic Expressions

 NAND, NOR, and Exclusive-OR Gates

 Simplification of Algebraic Expressions

 Manipulation of Algebraic Functions and NAND Gate

Implementations

Chapter Outline (2/2)

3

 A More General Boolean Algebra

 Solved Problems

The Design Process for Combinational

Systems (1/2)

4

 Consider designing a system that has as its input the code for

a decimal digit and produces as its output the signals to drive

a seven-segment display

The Design Process for Combinational

Systems (2/2)

5

 The design process involves the following steps (some may be

omitted)

1. Represent all the inputs and outputs in binary. If necessary,

break the problem into smaller subproblems

2. Formalize the design specification either by a truth table or by

an algebraic expression

3. Simplify the description

4. Implement the system

Don’t Care Conditions (1/1)

6

 In some systems, the value of the output is specified for only

some of the input conditions. The remaining input

combinations do not matter what the output is, that is, we

don’t care

 In a truth table, don’t cares are indicated by an ×, which can

be either 1 or 0

The Development of Truth Table (1/4)

7

 Consider the design in Fig. 2.3. The display driver must

provide the seven inputs to the display, a, b, c, d, e, f, and g.

1. The first thing that we must do is to select a code for the

decimal digit. That will affect the truth table

2. The second thing is whether the display requires a 0 or a 1

on each segment input to light that segment

3. Finally, we must decide what to do about the inputs that do

not correspond to a decimal digital (1010, 1011,…,1111)

The Development of Truth Table (2/4)

8

 We assume that the digits are stored in 8421 code. A 1 is to

light a segment, the version of 6, 7, and 9 does not matter,

and the inputs that do not represent a decimal digit never

occur

The Development of Truth Table (3/4)

9

 Example 2.1. We want to develop a truth table for a system

with three inputs, a, b, and c, and four outputs, w, x, y, z. The

output is a binary number equals to the largest integer that

meets the input conditions:

 Some inputs, e.g., (0,1,0), (1,0,1), may never occur. For

these inputs, the output is “don’t care” denoted by (×,×,×,×)

The Development of Truth Table (4/4)

10

 Example 2.1. (Cont’d)

 Input Output

Switching Algebra (1/2)

11

 Switching algebra is binary, that is, all variables and constants

take on one of the two values: 0 and 1. Quantities that are

not naturally binary must be coded into binary format

 Switching algebra is a special case of Boolean algebra, where

each variable takes on one of k values (k≧2)

 A number of properties of switching algebra:

1. OR (written as +); a+b (read a OR b) is 1 iff a=1 or b=1

or both

2. AND (written as ．or simply two variables catenated);

a．b=ab is 1 iff a=1 and b=1

3. NOT (written as ’); a’ (read NOT a) is 1 iff a=0

Switching Algebra (2/2)

12

 The term complement is sometimes used instead of NOT. The

operation is also referred to as inversion, and the device

implementing it is called an inverter

Basic Properties of Switching Algebra

(1/5)

13

 Properties of switching algebra:

1. commutative

2. associative

 We can expand the definition of OR to

 a+b+c+d+‥‥ is 1 if any of the operands is 1 and is 0 only

if all are 0’s

 The definition of AND extends to

 abcd‥‥ is 1 if all of the operands are 1’s and is 0 if any is 0

Basic Properties of Switching Algebra

(2/5)

14

 Expressions inside the parentheses are evaluated first. When

evaluating expressions without parentheses, the order of

precedence is

1. NOT

2. AND

3. OR

 For example,

 ab’+c’d=[a(b’)]+[(c’)d]

Basic Properties of Switching Algebra

(3/5)

15

 Properties of switching algebra (Cont’d):

 Proof of P8b. RHS=aa+ac+ba+bc

 =a+ac+ba+bc

 =a(1+c)+ba+bc

 =a+ba+bc

 =(1+b)a+bc

 =a+bc

 =LHS

Basic Properties of Switching Algebra

(4/5)

16

 Another way to prove P8b is to produce a truth table for

both sides of the equality and show that they are equal

Basic Properties of Switching Algebra

(5/5)

17

 Properties of switching algebra (Cont’d):

 The proof of P10a follows by using P8b

 P10b can be demonstrate by

Manipulation of Algebraic Functions

(1/3)

18

 A literal is the appearance of a variable or its complement.

Examples are a and b. In determining the complexity of an

expression, one of the measures is the number of literals. For

example, the expression,

 ab’+bc’d+a’d+e’

 contains eight literals

 A product term is one or more literals connected by AND

operators; e.g., ab’, bc’d, a’d, and e’.

 A standard product term, also called minterm, is a product

term that includes each variable of the problem

Manipulation of Algebraic Functions

(2/3)

19

 A sum of products expression (abbreviated SOP) is one or

more product terms connected by OR operators, e.g.,

 A canonical sum, or sum of standard product terms, is just a

sum of products expression where all of the terms are

standard product terms

Manipulation of Algebraic Functions

(3/3)

20

 Note that the first is a sum of standard product terms

 A product of sums expression (POS) is one or more sum terms

connected by AND operators, e.g.,

Implementation of Functions with AND,

OR, and NOT Gates (1/9)

21

 Consider implementing the function

 f=x’yz’+x’yz+xy’z’+xy’z+xyz.

 A block diagram of a circuit to implement this is shown

below.

Implementation of Functions with AND,

OR, and NOT Gates (2/9)

22

 This is an example of a two-level circuit. The number of levels

is the maximum number of gates through which a signal must

pass from the input to the output

 The same function can be manipulated to a minimum SOP

expression, one version of which is

 f=x’y+xy’+xz.

Implementation of Functions with AND,

OR, and NOT Gates (3/9)

23

 The simplest definition of minimum for a gate network is

minimum number of gates and, among those with the same

number of gates, minimum number of gate inputs

 The minimum POS form of the same function is

 f=(x+y)(x’+y’+z).

Implementation of Functions with AND,

OR, and NOT Gates (4/9)

24

 When we implement functions that are in neither SOP nor

POS form, the resulting circuits are more than two levels.

For example,

 h=z’+wx’y+v(xz+w’)

 is a four-level circuit because the signals x and z pass first

through an AND gate, then an OR, then an AND, and finally

through an OR.

 The gate network is shown in Fig. 2.11.

Implementation of Functions with AND,

OR, and NOT Gates (5/9)

25

Implementation of Functions with AND,

OR, and NOT Gates (6/9)

26

 Gates are typically available in dual in-line pin packages (DIPs)

of 14 connector pins. These packages contain integrated

circuits (ICs)

 Integrated circuits are categorized as small-scale integration

(SSI) when they contain just a few gates. Medium scale

integration (MSI) circuits contain as many as 100 gates. The

terminology large-scale integration (LSI), very large-scale

integration (VLSI), and giga-scale integration (GSI) are used for

even more complex packages

Implementation of Functions with AND,

OR, and NOT Gates (7/9)

27

 A list of the common AND, OR, and NOT integrated circuits

that might be encountered in the laboratory is

 The 7400 series of chips belong to transistor-transistor logic

(TTL).

Implementation of Functions with AND,

OR, and NOT Gates (8/9)

28

 We can build a three-input OR (or AND) gate using only

two-input ones

 If we need a two-input gate, we can build it from a three-

input one

 Similarly,

Implementation of Functions with AND,

OR, and NOT Gates (9/9)

29

 Logic 0 and logic 1 are represented by two voltages. Most

commonly, the higher voltage is used to represent 1 and the

lower voltage to represent 0. This is referred to as positive

logic. The opposite choice is also possible, which is referred to

as negative logic

The Complement (1/2)

30

 We state the DeMorgan’s theorem.

The Complement (2/2)

31

 Example 2.5. Please use DeMorgan’s theorem to find f’.

