# Chapter 5 Probability and Random Processes (III)

#### Gaussian and White Processes (1/1)

- Thermal noise in electronic devices, which is produced by the random movement of electrons due to thermal agitation, can be closely modeled by a Gaussian process
- Gaussian processes provide rather good models for some information sources
- Some interesting properties of the Gaussian processes, which will be discussed in this section, make these processes mathematically tractable and easy to use

#### Preliminary Knowledge to Understand Jointly Gaussian Process (1/2)

• Jointly Gaussian or binormal random variables  $X_1$  and  $X_2$  are distributed according to a joint PDF of the form

$$f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x_1-m_1)^2}{\sigma_1^2} + \frac{(x_2-m_2)^2}{\sigma_2^2} - \frac{2\rho(x_1-m_1)(x_2-m_2)}{\sigma_1\sigma_2}\right]\}$$

where  $m_1, m_2, \sigma_1^2, \sigma_2^2$  are the mean and variance of  $X_1$  and  $X_2$ , respectively.  $\rho$  is their correlation coefficient

 The definition of two jointly Gaussian random variables can be extended to more random variables. For instance, X<sub>1</sub>, X<sub>2</sub>, and X<sub>3</sub> are jointly Gaussian if the joint PDF follows the jointly Gaussian PDF

### Preliminary Knowledge to Understand Jointly Gaussian Process (2/2)

• The multivariate Gaussian random variables have density

$$f_{X}(x_{1},\dots,x_{k}) = \frac{1}{\sqrt{(2\pi)^{k}|\Sigma|}} \exp\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\},\$$

where *x* is a *k*-dimensional column vector,  $\Sigma$  is the symmetric covariance matrix,  $|\Sigma| \equiv \det \Sigma$  is the determinant of  $\Sigma$ 

• The equation above reduces to that of the univariate normal distribution if  $\Sigma$  is a 1×1 matrix (*i.e.*, a single real number)

#### Gaussian Processes (1/5)

- A random process X(t) is a Gaussian process if for all n and all  $(t_1, t_2, \ldots, t_n)$ , the random variables  $\{X(t_i)\}_{i=1}^n$  have a jointly Gaussian density function
- At any time instant  $t_0$ , the random variable  $X(t_0)$  is Gaussian; at any two points  $t_1$ ,  $t_2$ , random variables  $(X(t_1), X(t_2))$  are distributed according to a two-dimensional jointly Gaussian density function
- **Example 5.3.1.** Let X(t) be a zero-mean WSS Gaussian random variable with the power spectral density  $S_X(f)=5$  $\Pi(f/1000)$ . Determine the probability density function of the random variable X(3)

#### Gaussian Processes (2/5)

- Example 5.3.1. (Cont'd) Since *X*(*t*) is a Gaussian random process, the probability density function of random variable *X*(*t*) at any value of *t* is Gaussian.
- $X(3) \sim \mathcal{N}(m, \sigma^2)$
- Since the process is zero mean, at any time instance *t*, we have *E*[*X*(*t*)]=0; *m*=*E*[*X*(3)]=0
- Note that  $\sigma^{2} = VAR[X(3)]$   $= E[X^{2}(3)] - (E[X(3)])^{2}$   $= E[X^{2}(3)]$   $= R_{X}(0)$   $= \int_{-\infty}^{\infty} S_{X}(f) df$  = 5000

#### Gaussian Processes (3/5)

• Example 5.3.1. (Cont'd) Therefore,  $X(3) \sim \mathcal{N}(0,5000)$ , or the density function of X(3) is

$$f_X(x) = \frac{1}{\sqrt{10000\pi}} e^{-\frac{x^2}{10000\pi}}$$

- The random processes X(t) and Y(t) are *jointly Gaussian* if for all n, m and all  $(t_1, t_2, \ldots, t_n)$  and  $(\tau_1, \tau_2, \ldots, \tau_m)$ , the random vector  $(X(t_1), X(t_2), \ldots, X(t_n), Y(\tau_1), Y(\tau_2), \ldots, Y(\tau_m))$  is distributed according to an n+m dimensional jointly Gaussian distribution
- If X(t) and Y(t) are jointly Gaussian, then each of them is individually Gaussian; but the converse is not always true. That is, two individually Gaussian random processes are not always jointly Gaussian

## Gaussian Processes (4/5)

- If the Gaussian process X(t) is passed through an LTI system, then the output process Y(t) will also be a Gaussian process. Moreover, X(t) and Y(t) will be jointly Gaussian processes
- For jointly Gaussian processes, uncorrelatedness and independence are equivalent
- Example 5.3.2. Y(t) is the output process of a differentiator and X(t) is the system input defined in Example 5.3.1.
  Determine the probability density function of Y(3).
- Since a differentiator is an LTI system, Y(t) is a Gaussian process
- We can show that  $m_Y = 0$

#### Gaussian Processes (5/5)

• Example 5.3.2. (Cont'd) We have

$$\sigma_Y^2 = \int_{-\infty}^{\infty} S_Y(f) df$$
  
=  $\int_{-500}^{500} 5 |j 2\pi f|^2 df$   
=  $\int_{-500}^{500} 5 \times 4\pi^2 f^2 df$   
 $\approx 1.64 \times 10^{10}$ 

• Since  $m_Y = 0$  and  $\sigma_Y^2 = 1.64 \times 10^{10}$ , we have  $Y(3) \sim \mathcal{N}(0, 1.64 \times 10^{10})$ 

## White Processes (1/5)

- *White process* is used to denote processes in which all frequency components appear with equal power, *i.e.*, the power spectral density is a constant for all frequencies
- This parallels the notion of "white light" in which all colors exist
- A process X(t) is called a white process if it has a flat spectral density, *i.e.*, if S<sub>X</sub>(f) is a constant for all f



#### White Processes (2/5)

• If we find the power content of a white process using  $S_X(f) = C$ , a constant, we will have

$$P_X = \int_{-\infty}^{\infty} S_X(f) df = \int_{-\infty}^{\infty} C df = \infty$$

- No real physical process can have infinite power; therefore, a white process is not a meaningful physical process
- Quantum mechanical analysis of the thermal noise shows that it has a power spectral density given by

$$S_n(f) = \frac{\hbar f}{2(e^{\frac{\hbar f}{kT}} - 1)}$$

#### White Processes (3/5)

- $\hbar$  denotes Planck's constant (6.6×10<sup>-34</sup> J-sec)
- k is Boltzmann's constant  $(1.38 \times 10^{-23} \text{ J/K})$
- *T* is the temperature in degrees Kelvin
- Thermal noise, though not precisely white, for all practical purposes can be modeled as a white process with a power spectrum equal to kT/2
- kT is usually denoted by  $N_0$



### White Processes (4/5)

- The power spectral density of thermal noise is usually given as  $S_n(f)=N_0/2$ . It is sometimes referred to as the *two-sided power spectral density*, emphasizing that this spectrum extends to both positive and negative frequencies
- The autocorrelation function for a white process is  $R_n(\tau) = \mathcal{F}^{-1} \left[ \frac{N_0}{2} \right] = \frac{N_0}{2} \delta(\tau)$
- If we sample a white process at two points  $t_1$  and  $t_2$  ( $t_1 \neq t_2$ ), the resulting random variables will be uncorrelated
- If a random process is white and also Gaussian, any pair of random variables X(t<sub>1</sub>), X(t<sub>2</sub>), where t<sub>1</sub>≠t<sub>2</sub>, will also be independent (uncorrelatedness and independent are equivalent)

#### White Processes (5/5)

- In subsequent chapters, we assume the following properties:
  - Thermal noise is a WSS process
  - Thermal noise is a zero-mean process
  - Thermal noise is a Gaussian process
  - Thermal noise is a white process with a power spectral density  $S_n(f) = kT/2$

## Filtered Noise Processes (1/5)

- For a bandpass process the power spectral density is located away from the zero frequency and is mainly located around some frequency  $f_c$ , which is far from zero and larger than the bandwidth of the process
- A bandpass process can be expressed in terms of the in-phase and quadrature components
- Consider the process X(t) that is the output of an ideal bandpass filter located at frequencies around  $f_c$ . The bandwidth of the filter can be either W or 2W

#### Filtered Noise Processes (2/5)

• Consider two filters. The first one has a bandwidth 2*W* and its transfer function of the form

$$H_{1}(f) = \begin{cases} 1, |f - f_{c}| \leq W \\ 0, \text{ otherwise} \end{cases}$$

• The other one has a bandwidth *W* and its transfer function of the form

$$H_{2}(f) = \begin{cases} 1, & f_{c} \leq |f| \leq f_{c} + W \\ 0, & otherwise \end{cases}$$

#### Filtered Noise Processes (3/5)



#### Filtered Noise Processes (4/5)

• The power spectral density of the filtered noise will be  $S_X(f) = \frac{N_0}{2} |H(f)|^2 = \frac{N_0}{2} H(f)$ 

where we have used the fact that for ideal filters  $|H(f)|^2 = H(f)$ 

• For the two filtered noise processes, we have the following power spectral densities:

$$S_{X1}(f) = \begin{cases} \frac{N_0}{2}, & |f - f_c| \le W\\ 0, & otherwise \end{cases}$$

and

$$S_{X2}(f) = \begin{cases} \frac{N_0}{2}, & f_c \leq |f| \leq f_c + W \\ 0, & otherwise \end{cases}$$

## Filtered Noise Processes (5/5)

- All bandpass filtered noises have an in-phase and quadrature component that are lowpass signals
- The bandpass random process X(t) can be expressed as

 $X(t) = X_c(t)\cos(2\pi f_c t) - X_s(t)\sin(2\pi f_c t)$ 

where  $X_c(t)$  and  $X_s(t)$  are the in-phase and quadrature components, respectively

- $X_c(t)$  and  $X_s(t)$  are lowpass processes
- We can represent the filtered noise in terms of its envelope and phase as

 $X(t) = A(t)\cos(2\pi f_c t + \Theta(f))$ 

where A(t) and  $\Theta(f)$  are lowpass random process

## Properties of the In-Phase and Quadrature Processes (1/4)

- For filtered white Gaussian noise, the following properties for X<sub>c</sub>(t) and X<sub>s</sub>(t) can be proved
- 1.  $X_c(t)$  and  $X_s(t)$  are zero-mean, lowpass, jointly WSS, and jointly Gaussian random processes
- 2. If the power in process X(t) is  $P_X$ , then the power in each of the processes  $X_c(t)$  and  $X_s(t)$  is also  $P_X$ . In other words,

$$P_X = P_{X_c} = P_{X_s} = \int_{-\infty}^{\infty} S_X(f) df$$

3. Processes  $X_c(t)$  and  $X_s(t)$  have a common power spectral density. The power spectral densities can be either one shown in Fig. 5.22 when the white noise is filtered by  $H_1(f)$  and  $H_2(f)$ , respectively

## Properties of the In-Phase and Quadrature Processes (2/4)





## Properties of the In-Phase and Quadrature Processes (3/4)

4. If  $+f_c$  and  $-f_c$  are the axis of symmetry of the positive and negative frequencies, then  $X_c(t)$  and  $X_s(t)$  will be independent processes. In other words, when the white noise is filtered by  $H_1(f)$ , then  $X_c(t)$  and  $X_s(t)$  are independent. It is not independent when filtered by  $H_2(f)$  Properties of the In-Phase and Quadrature Processes (4/4)

- Example 5.3.3. For the bandpass white noise at the output of filter  $H_1(f)$  as shown in Fig. 5.21, find the power spectral density of the process  $Z(t)=aX_c(t)+bX_s(t)$
- Since f<sub>c</sub> is the axis of symmetry of the noise power spectral density, the in-phase and quadrature components of the noise will be independent; therefore, we are dealing with the sum of two independent and zero-mean processes
- The power spectral density of Z(t) is the sum of the power spectral densities of  $aX_c(t)$  and  $bX_s(t)$ . Thus,  $S_Z(f) = a^2 S_{Xc}(f) + b^2 S_{Xs}(f)$

## Noise Equivalent Bandwidth (1/4)

- When a white Gaussian noise passes through a filter, the output process, will not be white anymore
- The filter characteristic shapes the spectral properties of the output process, we have

$$S_{Y}(f) = S_{X}(f) |H(f)|^{2} = \frac{N_{0}}{2} |H(f)|^{2}$$

- The power content of the output process is  $P_Y = \int_{-\infty}^{\infty} S_Y(f) df = \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 df$
- We define the noise equivalent bandwidth of a filter with the frequency response *H*(*f*) as

$$B_{neq} = \frac{\int_{-\infty}^{\infty} |H(f)|^2 df}{2H_{\text{max}}^2}$$

#### Noise Equivalent Bandwidth (2/4)

• The power content of the output process can be written as

$$P_Y = \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 df$$
$$= \frac{N_0}{2} \times 2B_{neq} H_{max}^2$$
$$= N_0 B_{neq} H_{max}^2$$



## Noise Equivalent Bandwidth (3/4)

- **Example 5.3.4.** Find the noise equivalent bandwidth of a lowpass RC filter
- The transfer function of the lowpass RC filter is  $\frac{1}{1}$

$$H(f) = \frac{1}{1 + j2\pi fRC}$$



#### Noise Equivalent Bandwidth (4/4)

• **Example 5.3.4.** (Cont'd) Defining  $\tau = RC$ , we have

$$|H(f)| = \frac{1}{\sqrt{1 + 4\pi^2 f^2 \tau^2}}$$

and therefore  $H_{max} = 1$ . We also have

$$\int_{-\infty}^{\infty} |H(f)|^2 df = 2 \int_{0}^{\infty} \frac{1}{1 + 4\pi^2 f^2 \tau^2} df$$
$$= \frac{1}{2\tau}$$

Hence,

$$B_{neq} = \frac{\frac{1}{2\tau}}{2 \times 1} = \frac{1}{4RC}$$