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Chapter 5  Probability and Random 

Processes (III) 



Gaussian and White Processes (1/1) 
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 Thermal noise in electronic devices, which is produced by 

the random movement of electrons due to thermal agitation, 

can be closely modeled by a Gaussian process 

 Gaussian processes provide rather good models for some 

information sources  

 Some interesting properties of the Gaussian processes, which 

will be discussed in this section, make these processes 

mathematically tractable and easy to use 



Preliminary Knowledge to Understand 

Jointly Gaussian Process (1/2) 
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 Jointly Gaussian or binormal random variables X1 and X2 are 

distributed according to a joint PDF of the form  

 

     

   where m1, m2, σ1
2, σ2

2 are the mean and variance of X1 and X2, 

respectively. ρ is their correlation coefficient 

 The definition of two jointly Gaussian random variables can 

be extended to more random variables. For instance, X1, X2, 

and X3 are jointly Gaussian if the joint PDF follows the 

jointly Gaussian PDF 
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Preliminary Knowledge to Understand 

Jointly Gaussian Process (2/2) 
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 The multivariate Gaussian random variables have density 

                                                                                  , 

    where x is a k-dimensional column vector, Σ is the 

symmetric covariance matrix,                  is the determinant 

of Σ 

 The equation above reduces to that of the univariate normal 

distribution if Σ is a 1×1 matrix (i.e., a single real number) 
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Gaussian Processes (1/5) 
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 A random process X(t) is a Gaussian process if for all n and all 

(t1,t2,…,tn), the random variables {X(ti)}i=1
n have a jointly 

Gaussian density function 

 At any time instant t0, the random variable X(t0) is Gaussian; 

at any two points t1, t2, random variables (X(t1),X(t2)) are 

distributed according to a two-dimensional jointly Gaussian 

density function 

 Example 5.3.1. Let X(t) be a zero-mean WSS Gaussian 

random variable with the power spectral density SX(f)=5 
Π(f/1000). Determine the probability density function of the 

random variable X(3) 



Gaussian Processes (2/5) 
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 Example 5.3.1. (Cont’d) Since X(t) is a Gaussian random 

process, the probability density function of random variable 

X(t) at any value of t is Gaussian. 

 X(3)~N(m,σ2) 

 Since the process is zero mean, at any time instance t, we 

have E[X(t)]=0; m=E[X(3)]=0 

 Note that 
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Gaussian Processes (3/5) 

7 

 Example 5.3.1. (Cont’d) Therefore, X(3)~N(0,5000), or 

the density function of X(3) is 

 

 The random processes X(t) and Y(t) are jointly Gaussian if for 

all n, m and all (t1,t2,…,tn) and (τ1,τ2,…,τm), the random 

vector (X(t1),X(t2),…,X(tn),Y(τ1),Y(τ2),…,Y(τm)) is 

distributed according to an n+m dimensional jointly Gaussian 

distribution 

 If X(t) and Y(t) are jointly Gaussian, then each of them is 

individually Gaussian; but the converse is not always true. 

That is, two individually Gaussian random processes are not 

always jointly Gaussian 
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Gaussian Processes (4/5) 
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 If the Gaussian process X(t) is passed through an LTI system, 

then the output process Y(t) will also be a Gaussian process. 

Moreover, X(t) and Y(t) will be jointly Gaussian processes 

 For jointly Gaussian processes, uncorrelatedness and 

independence are equivalent 

 Example 5.3.2. Y(t) is the output process of a differentiator 

and X(t) is the system input defined in Example 5.3.1. 

Determine the probability density function of Y(3). 

 Since a differentiator is an LTI system, Y(t) is a Gaussian 

process 

 We can show that mY=0 



Gaussian Processes (5/5) 
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 Example 5.3.2. (Cont’d) We have 

 

 

 

 

 Since mY=0 and σY
2=1.64 ×1010, we have Y(3)~N (0, 1.64 

×1010) 
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White Processes (1/5) 
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 White process is used to denote processes in which all 

frequency components appear with equal power, i.e., the 

power spectral density is a constant for all frequencies 

 This parallels the notion of “white light” in which all colors 

exist 

 A process X(t) is called a white process if it has a flat spectral 

density, i.e., if SX(f) is a constant for all f 

 

 



White Processes (2/5) 
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 If we find the power content of a white process using SX(f)=C, 

a constant, we will have 

 

 No real physical process can have infinite power; therefore, a 

white process is not a meaningful physical process 

 Quantum mechanical analysis of the thermal noise shows that 

it has a power spectral density given by 
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White Processes (3/5) 
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    denotes Planck’s constant (6.6×10-34 J-sec) 

 k is Boltzmann’s constant (1.38×10-23 J/K)  

 T is the temperature in degrees Kelvin 

 Thermal noise, though not precisely white, for all practical 

purposes can be modeled as a white process with a power 

spectrum equal to kT/2 

 kT is usually denoted by N0 





White Processes (4/5) 
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 The power spectral density of thermal noise is usually given 

as Sn(f)=N0/2. It is sometimes referred to as the two-sided 

power spectral density, emphasizing that this spectrum extends 

to both positive and negative frequencies 

 The autocorrelation function for a white process is 

                      F -1 
 If we sample a white process at two points t1 and t2 (t1≠t2), 

the resulting random variables will be uncorrelated 

 If a random process is white and also Gaussian, any pair of 

random variables X(t1), X(t2), where t1≠t2, will also be 

independent (uncorrelatedness and independent are 

equivalent) 
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White Processes (5/5) 
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 In subsequent chapters, we assume the following properties: 

 Thermal noise is a WSS process 

 Thermal noise is a zero-mean process 

 Thermal noise is a Gaussian process 

 Thermal noise is a white process with a power spectral density 

Sn(f)=kT/2 



Filtered Noise Processes (1/5) 
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 For a bandpass process the power spectral density is located 

away from the zero frequency and is mainly located around 

some frequency fc, which is far from zero and larger than the 

bandwidth of the process 

 A bandpass process can be expressed in terms of the in-phase 

and quadrature components 

 Consider the process X(t) that is the output of an ideal 

bandpass filter located at frequencies around fc. The 

bandwidth of the filter can be either W or 2W 



Filtered Noise Processes (2/5) 
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 Consider two filters. The first one has a bandwidth 2W and its 

transfer function of the form 

 

 

 The other one has a bandwidth W and its transfer function of 

the form 
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Filtered Noise Processes (3/5) 
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Filtered Noise Processes (4/5) 
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 The power spectral density of the filtered noise will be 

 

    where we have used the fact that for ideal filters |H(f)|2=H(f) 

 For the two filtered noise processes, we have the following 

power spectral densities: 
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Filtered Noise Processes (5/5) 
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 All bandpass filtered noises have an in-phase and quadrature 

component that are lowpass signals 

 The bandpass random process X(t) can be expressed as 

 

    where Xc(t) and Xs(t) are the in-phase and quadrature 

components, respectively 

 Xc(t) and Xs(t) are lowpass processes 

 We can represent the filtered noise in terms of its envelope 

and phase as 

 

    where A(t) and Θ(f) are lowpass random process 
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Properties of the In-Phase and 

Quadrature Processes (1/4) 
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 For filtered white Gaussian noise, the following properties 

for Xc(t) and Xs(t) can be proved 

1. Xc(t) and Xs(t) are zero-mean, lowpass, jointly WSS, and 

jointly Gaussian random processes 

2. If the power in process X(t) is PX, then the power in each of 

the processes Xc(t) and Xs(t) is also PX. In other words, 

 

3. Processes Xc(t) and Xs(t) have a common power spectral 

density. The power spectral densities can be either one 

shown in Fig. 5.22 when the white noise is filtered by H1(f) 

and H2(f), respectively 
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Properties of the In-Phase and 

Quadrature Processes (2/4) 
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Properties of the In-Phase and 

Quadrature Processes (3/4) 
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4. If +fc and –fc are the axis of symmetry of the positive and 

    negative frequencies, then Xc(t) and Xs(t) will be independent  

    processes. In other words, when the white noise is filtered by  

    H1(f), then Xc(t) and Xs(t) are independent. It is not  

    independent when filtered by H2(f) 



Properties of the In-Phase and 

Quadrature Processes (4/4) 
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 Example 5.3.3. For the bandpass white noise at the output 

of filter H1(f) as shown in Fig. 5.21, find the power spectral 

density of the process Z(t)=aXc(t)+bXs(t) 

 Since fc is the axis of symmetry of the noise power spectral 

density, the in-phase and quadrature components of the noise 

will be independent; therefore, we are dealing with the sum 

of two independent and zero-mean processes 

 The power spectral density of Z(t) is the sum of the power 

spectral densities of aXc(t) and bXs(t). Thus, 

SZ(f)=a2SXc(f)+b2SXs(f) 



Noise Equivalent Bandwidth (1/4) 
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 When a white Gaussian noise passes through a filter, the 

output process, will not be white anymore 

 The filter characteristic shapes the spectral properties of the 

output process, we have 

 

 The power content of the output process is 

 

 We define the noise equivalent bandwidth of a filter with the 

frequency response H(f) as 
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Noise Equivalent Bandwidth (2/4) 
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 The power content of the output process can be written as 
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Noise Equivalent Bandwidth (3/4) 
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 Example 5.3.4. Find the noise equivalent bandwidth of a 

lowpass RC filter 

 The transfer function of the lowpass RC filter is 
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Noise Equivalent Bandwidth (4/4) 
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 Example 5.3.4. (Cont’d) Defining τ=RC, we have 

 

 

    and therefore Hmax=1. We also have 

 

 

 

     Hence,  
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