Summary of M. Giordani et al., "Toward 6G Networks Use Cases and Technologies," IEEE Commun. Mag., Mar. 2020, pp. 55-61.

David Shiung

Introduction (1/3)

- Sixth generation (6G) connections will move beyond personalized communication toward the full realization of the Internet of Things (IoT) paradigm, connecting not just people, but also computing resources, vehicles, devices, wearables, sensors, and even robotic agents
- The rapid development of data-centric and automated processes, which require a data rate on the order of terabits per second, a latency of hundreds of microseconds, and 10⁷ connections per km², may exceed even the capabilities of the emerging 5G systems

Introduction (2/3)

- 6G could very much benefit from even higher spectrum technologies, for example, through terahertz and optical communications
- The need for 3D coverage calls for new cell-less architectural paradigms
- Integrating intelligence in the network
- 6G will be developed to jointly meet stringent network demands (e.g., ultra-high reliability, capacity, efficiency, and low latency)

Introduction (3/3)

Figure 1. Evolution of cellular networks, from 1G to 6G, with a representative application for each generation.

6G Use Cases (1/4)

- Augmented Reality (AR) and Virtual Reality (VR)
 - 5G will trigger the early adoption of AR/VR
 - The proliferation of AR/VR applications will deplete the 5G spectrum, and requires a system capacity above 1 Tb/s, as opposed to the 20 Gb/s target defined for 5G
 - To meet the latency requirements that enable real-time user interaction in the immersive environment, AR/VR cannot be compressed (coding and decoding is a time-consuming process)

6G Use Cases (2/4)

- Holographic Telepresence (Teleportation)
 - A raw hologram, without any compression, with colors, full parallax, and 30 fps, would require 4.32 Tb/s. The latency requirement will hit sub-milli-second, and thousands of synchronized view angles will be necessary
- eHealth
 - 6G will revolutionize the healthcare sector, eliminating time and space barriers through remote surgery and guaranteeing health care workflow optimizations

6G Use Cases (3/4)

- Pervasive Connectivity
 - Mobile traffic is expected to grow three-fold from 2016 to 2021, pushing the number of mobile devices to the extreme, with 10⁷ devices per km² in dense areas (up from 10⁶ in 5G)
- Industry 4.0 and Robotics
 - 6G will fully realize the Industry 4.0 revolution started with 5G, that is, the digital transformation of manufacturing through cyber physical systems and IoT services
- Unmanned Mobility
 - The increasing number of sensors per vehicle will demand increasing data rates (with terabytes generated per driving hour)

6G Use Cases (4/4)

Figure 2. Representation of multiple KPIs of 6G use cases, together with the improvements with respect to 5G networks, using data from [1–9].

6G Enabling Technologies (1/2)

Enabling Technology	Potential	Challenges	Use cases
New spectrum			
Terahertz	High bandwidth, small antenna size, focused beams	Circuit design, high propagation loss	Pervasive connectivity, industry 4.0, holographic telepresence
VLC	Low-cost hardware, low interference, unlicensed spectrum	Limited coverage, need for RF uplink	Pervasive connectivity, eHealth
Novel PHY techniques			
Full duplex	Continuous TX/RX and relaying	Management of interference, scheduling	Pervasive connectivity, industry 4.0
Out-of-band channel estimation	Flexible multi-spectrum communications	Need for reliable frequency mapping	Pervasive connectivity, holographic telepresence
Sensing and localization	Novel services and context-based control	Efficient multiplexing of communication and localization	eHealth, unmanned mobility, industry 4.0
Innovative network architectures			
Multi-connectivity and cell-less architecture	Seamless mobility and integration of different kinds of links	Scheduling, need for new network design	Pervasive connectivity, unmanned mobility, holographic telepresence, eHealth
3D network architecture	Ubiquitous 3D coverage, seamless service	Modeling, topology optimization and energy efficiency	Pervasive connectivity, eHealth, unmanned mobility
Disaggregation and virtualization	Lower costs for operators for massively- dense deployments	High performance for PHY and MAC processing	Pervasive connectivity, holographic telepresence, industry 4.0, unmanned mobility
Advanced access-backhaul integration	Flexible deployment options, outdoor-to- indoor relaying	Scalability, scheduling and interference	Pervasive connectivity, eHealth
Energy-harvesting and low- power operations	Energy-efficient network operations, resiliency	Need to integrate energy source characteristics in protocols	Pervasive connectivity, eHealth
Intelligence in the network			
Learning for value of information assessment	Intelligent and autonomous selection of the information to transmit	Complexity, unsupervised learning	Pervasive connectivity, eHealth, holographic telepresence, industry 4.0, unmanned mobility
Knowledge sharing	Speed up learning in new scenarios	Need to design novel sharing mechanisms	Pervasive connectivity, unmanned mobility
User-centric network architecture	Distributed intelligence to the endpoints of the network	Real-time and energy-efficient processing	Pervasive connectivity, eHealth, industry 4.0
Not considered in 5G		With new features/capabilities in 6G	

Table 1. Comparison of 6G enabling technologies and relevant use cases.

6G Enabling Technologies (2/2)

Figure 3. Path loss for sub-6 GHz, mmWave, and terahertz bands, and received power for VLC. The sub-6 GHz and mmWave path loss follows the 3GPP models considering both line-of-sight (LoS) and non-LoS (NLoS) conditions, while LoS-only is considered for terahertz [10] and VLC [11].

Disruptive Communication Technologies (1/2)

- Massive multiple-input multiple-output (MIMO) and mmWave communications are both key enablers of 5G networks
- 6G networks are expected to rely on conventional spectrum (i.e., sub-6 GHz and mmWaves) but also on frequency bands that have not yet been considered for cellular standards, namely the terahertz band and visible light communications (VLC)
- Terahertz Communications
- VLC
- Full-Duplex Communication Stack

Disruptive Communication Technologies (2/2)

- Novel Channel Estimation Techniques (e.g., Out-of-Band Estimation and Compressed Sensing)
- Sensing and Network-Based Localization

Innovative Network Architectures (1/2)

- Tight integration of multiple frequencies and communication technologies and cell-less architecture
- 3D Network Architecture
- Disaggregation and Virtualization of the Networking Equipment
- Advanced Access-Backhaul Integration
- Energy-Harvesting Strategies for Low Power Consumption Network Operation

Innovative Network Architectures (2/2)

Figure 4. Architectural innovations introduced in 6G networks.

Integrating Intelligence in the Network (1/1)

- Learning Techniques for Data Selection and Feature Extraction
- Inter-User Inter-Operatpor Knowledge Sharing
- User-Centric Network Architecture