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Chapter 5  Probability and Random 

Processes (II) 
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 The deterministic assumption on time-varying signals is not a 

valid assumption, and it is more appropriate to model signals 

as random rather than deterministic functions 

 A random process is defined as the mapping of an element ωi in 

the sample space Ω to a signal x(t;ωi) 

 The realization of one from the set of possible signals is 

governed by some probabilistic law 

 The difference between a random process and a random 

variables lies in that in random processes, we have signals 

(functions) instead of values (numbers) 
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 For each ωi, there exists a deterministic time function  

    x(t; ωi), which is called a sample function or a realization of the 

random process 

 At each time instant t0, the random process X(t) is 

degenerated into a random variable denoted by X(t0). In 

other words, at any time instant, the value of a random process is a 

random variable 
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 Example 5.2.5. Let Ω denote the sample space 

corresponding to the random experiment of throwing a dice. 

Obviously, in this case Ω={1,2,3,4,5,6}. For all ωi, let X(t; 
ωi)= ωie

-tu-1(t) denote a random process. Then X(1) is a 

random variable taking value e-1,2e-1,…,6e-1 and each has 

probability 1/6. Sample functions of this random process are 

shown in Fig. 5.14. 
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 Example 5.2.5. (Cont’d) 
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 Example 5.2.6. We can have discrete-time random 

processes, which are similar to continuous-time random 

processes. For instance at any time instant let Xi denote the 

outcome of a random experiment consisting of independent 

drawings from a Gaussian random variable distributed 

according to N (0,1). 
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 Define the mean, or expectation, of the random process X(t) as 

a deterministic function of  time by mX(t) that at each time 

instant t0 equals the mean of the random variable X(t0). That 

is, mX(t)=E[X(t)] for all t 

 At any t0, the random variable X(t0) is well defined with a 

probability density function              , we have 

 

 Fig. 5.15 gives a pictorial description of this definition 
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 Example 5.2.7. Let the random process 

X(t)=Acos(2πf0t+Θ), where A and f0 denote the fixed 

amplitude and frequency and Θ denotes the random phase. Θ 

is uniformly distributed on [0, 2π). Please find E[X(t)] 

 We have 

 

    Hence, 

 

     We observe that mX(t) is independent of t 
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 The autocorrelation function of the random process X(t), 

denoted by RX(t1,t2), is defined by RX(t1,t2)=E[X(t1)X(t2)] 

 RX(t1,t2) is a deterministic function of two variables t1 and t2 

given by 

 

 The autocorrelation function is important because it 

completely describes the power spectral density and the 

power content of a large class of random processes 
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 Example 5.2.8. The random process X(t) is defined in 

Example 5.2.7. Please find the autocorrelation function of 

X(t).  

 We have 

 

 

 

     where we have used  
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 Example 5.2.9. The process X(t)=X, where X is a random 

variable uniformly distributed on [-1,1]. Find the 

autocorrelation function of X(t).  

 RX(t1,t2)=E(X2)= 
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 A process X(t) is wide-sense stationary (WSS) if the 

following conditions are satisfied: 

 mX(t)=E(X(t)) is independent of t 

 RX(t1,t2) depends only on the time difference τ=t1-t2 and not on 

t1 and t2 individually 

 For WSS processes, their mean and autocorrelation will be 

denoted by mX and RX(τ) 

 Example 5.2.10. The random process X(t) is defined as 

X(t)=Acos(2πf0t+Θ), where A and f0 denote amplitude and 

frequency. Θ is uniformly distributed on [0,2π). 

 E[X(t)]=0, RX(t1,t2)=A2/2cos(2πf0(t1-t2)), X(t) is WSS 
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 Example 5.2.11. Let the random process Y(t) be similar to 

the random X(t) in Example 5.2.10, but assume that Θ is 

uniformly distributed between 0 and π 

 We have 

 

 

 

     mY(t) is not independent of t, the process Y(t) is not WSS 

 From the definition of autocorrelation function, it follows 

that RX(t1,t2)=RX(t2,t1). If X(t) is WSS, we have RX(τ)=RX(-τ), 

i.e., the autocorrelation function is an even function in WSS 

processes 
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 Two random processes X(t) and Y(t) are independent if, for all 

t1, t2, the random variables X(t1) and Y(t2) are independent. 

Similarly, X(t) and Y(t) are uncorrelated if X(t1) and Y(t2) are 

uncorrelated for all t1, t2 

 The cross correlation between two random processes X(t) and 

Y(t) is defined as 

                             RXY(t1,t2)=E[X(t1)Y(t2)]   

     In other words, we have 

                             RXY(t1,t2)=RYX(t2,t1) 
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 Two random processes X(t) and Y(t) are jointly WSS, if both 

X(t) and Y(t) are individually WSS and the cross correlation 

RXY(t1,t2) depends only on τ=t1-t2 

 Note that for jointly WSS random processes, from the 

definition and the relation RXY(t1,t2)=RYX(t2,t1), it follows that 

 

 Example 5.2.12. Assume that the two random processes X(t) 

and Y(t) are jointly WSS, determine the autocorrelation of 

the process Z(t)=X(t)+Y(t) 

 By definition, 
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 When a random process passes through a linear time-

invariant system, the output is also a random process 

 We assume that a WSS process X(t) is the input to a linear 

time-invariant system with the impulse response h(t) and the 

output process is denoted by Y(t) 
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 We will demonstrate that if a WSS process X(t) with mean mX 

and autocorrelation function RX(τ) is passed through a linear 

time-invariant system with impulse response h(t), the input 

and output process X(t) and Y(t) will be jointly WSS with 
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 By using the convolution integral to relate the output Y(t) to 

the input X(t), we have 

 

 

 

 

 

 This proves that mY is independent of t 





  




 dthXEtYE )()()]([





  dthXE )()]([





  dthmX )(

YX

tu

mduuhm  






)(




Random Processes and Linear 

Systems (4/7) 

21 

 The cross correlation function between the output and the 

input is 

 

 

 

 

 

 

 

 RXY(t1,t2) depends only on τ=t1-t2 
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 The autocorrelation function of the output is 

 

 

 

 

 

 

 RY(t1,t2) and RXY(t1,t2) depend only on τ=t1-t2. Thus, the 

output process is WSS. The input and output processes are 

jointly WSS 
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 Example 5.2.13. Assume a WSS process passes through a 

differentiator. What are the mean and autocorrelation 

functions of the output? What is the cross correlation 

between the input and output? 

 In a differentiator, h(t)=δ’(t). Since δ’(t) is odd, it follows 

that 

 

    The cross correlation function between output and input is 

 

    and the autocorrelation function of the output is 
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 Example 5.2.14. Repeat Example 5.2.13 for the case where 

the LTI system is a quadrature filter defined by              ; 

therefore, H(f)=-jsgn(f). In this case, the output of the filter 

is the Hilbert transform of the input  

 We have 

                  

     The cross correlation function is   

 

     and the autocorrelation function of the output is 

 

     where we assume that the RX(τ) has no DC component 
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 If the signals of the random process are slowly varying, then 

the random process will mainly contain low frequencies and 

its power will be mostly concentrated at low frequencies 

 If the signals change very fast, then most of the power in the 

random process will be at the high frequency components 

 A useful function that determines the distribution of the 

power of the random process at different frequencies is the 

power spectral density or power spectrum of the random process 

 The power spectral density of a random process X(t) is 

denoted by SX(f), and denotes the strength of the power in 

the random process as a function of frequency 

 The unit of SX(f) is Watts/Hz 
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 For WSS processes, the Wiener-Khinchin theorem relates the 

power spectrum of the random process to its autocorrelation 

function 

 Wiener-Khinchin Theorem. For a WSS random process 

X(t), the power spectral density is the Fourier transform of 

the autocorrelation function, i.e., 

                                 SX(f)=F  [RX(τ)] 

 Example 5.2.15. For the WSS random process 

X(t)=Acos(2πf0t+Θ), we have 

 

    Hence,  
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 Example 5.2.15. (Cont’d) All the power content of the 

process is located at f0 and –f0 because the sample functions 

of this process are sinusoids with their power at those 

frequencies 
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 The power content, or simply the power, of a random process 

is the sum of powers at all frequencies in that random process. 

This means 

 

 Since SX(f) is the Fourier transform of RX(τ), then RX(τ) will 

be the inverse Fourier of SX(f). We have 

 

    Substituting τ=0 into this relation yields 

 

    We conclude that 

                                  PX=RX(0) 
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 The power in a WSS random process can be found either by 

integrating its power spectral density or substituting τ=0 in 

the autocorrelation function of the process 

 Example 5.2.17. Find the power in the process given in 

Example 5.2.15.  

 Notice that  
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 Example 5.2.17. (Cont’d) We can use either the relation 
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 We have proved that when a WSS process with mean mX and 

autocorrelation RX(τ) passes through a LTI system with the 

impulse response h(t), the output process will be also WSS 

with mean 

 

    and autocorrelation  

 

 Note X(t) and Y(t) will be jointly WSS with the cross-

correlation function  
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 We can compute the Fourier transform of both sides of these 

relations to obtain 

 

 

 Note that we already use F  [h(-τ)]=H*(f) 

 The first equation says that the mean value of the response of 

the system only depends on the value of H(f) at f=0 (DC 

response) 

 The second equation says that when dealing with the power 

spectrum, the phase of H(f) is irrelevant; only the magnitude 

of H(f) affects the output power spectrum 
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 If a random process passes through a differentiator, we have 

H(f)=j2πf; hence, 

 

 

 Let us define the cross spectral density SXY(f) as 

                              SXY(f)=F  [RXY(τ)]. 

    Then 

                                SXY(f)=SX(f)H*(f), 

    and since RYX(τ)=RXY(-τ), we have 

                            SYX(f)=S*
XY(f)=SX(f)H(f) 

    (Hint: RX (τ) is real and even, F [RX(τ)]=SX(f) is real and even.) 
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 Note that SX(f) and SY(f) are real non-negative functions, SXY(f) 

and SYX(f) can generally be complex functions 
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 Example 5.2.18. If the process in Example 5.2.2 passes 

through a differentiator, we have H(f)=j2πf. Since 

X(t)=Acos(2πf0t+Θ), Θ is uniformly distributed between 0 

and 2π.  Then, 

 

 Therefore, 
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 Let Z(t)=X(t)+Y(t), where X(t) and Y(t) are jointly WSS 

processes 

 We already know that Z(t) is a WSS process with 

                    RZ(τ)=RX(τ)+RY(τ)+RXY(τ)+RYX(τ)       (5.2.21) 

 We have RXY(τ)=RYX(-τ). From this information, conclude 

that SXY(f)=S*
YX(f) 

 Taking the Fourier transform of both sides of Eq. (5.2.21), 

we have 

                    SZ(f)=SX(f)+SY(f)+SXY(f)+SYX(f) 

                           =SX(f)+SY(f)+SXY(f)+SXY
*(f) 

                           =SX(f)+SY(f)+2Re[SXY(f)] 
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 The power spectral density of the sum process is the sum of 
the power spectra of the individual processes plus a third 
term, which depends on the cross correlation between the 
two processes 

 If two WSS processes X(t+τ) and Y(t) are uncorrelated, then 
we have 

                            COV(X(t+ τ),Y(t)) 

                            =E[X(t+τ)Y(t)]-E[X(t+τ)]E[Y(t)] 

                            =0 

     Thus, we have  

                     E[X(t+τ)Y(t)]=E[X(t+τ)]E[Y(t)] 

                                          =mXmY 
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 If at least one of the processes is zero mean, we will have 

RXY(τ)=0 and  

                            SZ(f)=SX(f)+SY(f) 

 Example 5.2.20. Let the random process X(t) is defined as 

X(t)=Acos(2πf0t+Θ), where A and f0 denote the fixed 

amplitude and frequency and Θ denotes the random phase. Θ 

is uniformly distributed between 0 and 2π. Let  

                                   . Please find SZ(f). 

 Let Y(t)=dX(t)/dt and h(t) be the impulse response of a 

differentiator. Y(t) and X(t) are the output and input 

processes of the differentiator, respectively 
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 Example 5.2.20. (Cont’d) From previous examples, we know that 

    H(f)=j2πf and                                                        . Then, 

 

 

    therefore, 

 

    From Example 5.2.18, we also know that  

 

 Hence 
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