Chapter 5 Probability and Random

Processes (lI)




Random Processes: Basic Concepts

(1/6)

® The deterministic assumption on time-varying signals is not a
valid assumption, and it is more appropriate to model signals

as random rather than deterministic functions

® A random process is defined as the mapping of an element w, in

the sample space {) to a signal x(r;0))

® The realization of one from the set of possible Signals is

governed by some probabilistic law

® The difference between a random process and a random
variables lies in that in random processes, we have signals

(functions) instead of values (numbers)
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Random Processes: Basic Concepts

(3/6)

® For each w,, there exists a deterministic time function

x(t; W,), which is called a sample function or a realization of the

random process

® At each time instant ¢, the random process X(t) is
degenerated into a random variable denoted by X(t,). In
other words, at any time instant, the value of a random process is a

random variable
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Random Processes: Basic Concepts

(4/6)

* Example 5.2.5. Let {) denote the sample space
corresponding to the random experiment of throwing a dice.
Obviously, in this case 2={1,2,3,4,5,6} . For all w,, let X(¢;
w,)= W.e'u (t) denote a random process. Then X(1) is a
random variable taking value e',2¢™,...,6¢" and each has
probability 1/6. Sample functions of this random process are

shown in Fig. 5.14.




Random Processes: Basic Concepts

(5/6)

* Example 5.2.5. (Cont’d)
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(6/6)

* Example 5.2.6. We can have discrete-time random
processes, which are similar to continuous-time random
processes. For instance at any time instant let X, denote the
outcome of a random experiment consisting of independent

drawings from a Gaussian random variable distributed

according to NV (0,1).




Statistical Averages (1/6)

® Define the mean, or expectation, of the random process X(¢) as
a deterministic function of time by m () that at each time
instant ¢, equals the mean of the random variable X(t,). That
is, m,(t)=E[X(¢)] for all ¢

* Atany t,, the random variable X(z,) is well defined with a
probability density function fy ) (X), we have

ELX (to)]= My (to) = [ Xy, ()X
® Fig. 5.15 gives a pictorial description of this definition
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Statistical Averages (3/6)

° Example 5.2.7. Let the random process
X(t)=Acos(2Tf,t+0), where 4 and f; denote the fixed

amplitude and frequency and ® denotes the random phase. ©
is uniformly distributed on [0, 27T). Please find E[X(t)]

® We have )
5o 0<60<2rx

0, otherwise

f@ (‘9) = {
Hence,

E[X (t)] = joz” Acos@Af,t+0)-Ldo=0

We observe that m(t) is independent of ¢




Statistical Averages (4/6)

® The autocorrelation function of the random process X(z),
denoted by R (t,,t,), is detined by R (¢,,t,) =E[X(¢,)X(t,)]
® R,(t,t,) is a deterministic function of two variables ¢, and ¢,
given by
Ry (b)) = [ [ %% Fy e (%0 X)X, d%,

® The autocorrelation function is important because it
completely describes the power spectral density and the

power content of a large class of random processes




Statistical Averages (5/6)

* Example 5.2.8.The random process X(z) is defined in
Example 5.2.7. Please find the autocorrelation function of
X(t).

® We have

R, (t,,t,) = E[Acos(2xft, + ®) Acos(2ft, + O)]
= A’E[2 cos(2f,(t, —t,)) +1 cos@Af,(t, +1,) +20)]
= A" cos(f,(t, -t,)),
where we have used

E[cos(2#,(t, +1,) +20)] = Jjﬂ cos@Af,(t, +t,)+26)--d0 =0




Statistical Averages (6/6)

* Example 5.2.9.The process X(t)=X, where X is a random
variable uniformly distributed on [-1,1]. Find the

autocorrelation functlon of X(¢).

1
® Ry(ty,t)=E(X*)= j—dX—§




Wide-Sense Stationary Processes (1/2)

® A process X(t) is wide-sense stationary (WSS) if the

following conditions are satisfied:
® m(t)=E(X(t)) is independent of ¢
® Ry(ty,t,) depends only on the time difference T=t,-, and not on
t, and t, individually
® For WSS processes, their mean and autocorrelation will be

denoted by my and R (T)

* Example 5.2.10. The random process X(t) is defined as
X(t)=Acos(2Ttfyt+0), where 4 and f; denote amplitude and
frequency. © is uniformly distributed on [0,21T).

® E[X(1)]=0, Ry(t,t,) =A%/ 2cos(2Tfy(t,-t,)), X(t) is WSS
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Wide-Sense Stationary Processes (2/2)

Example 5.2.11. Let the random process Y(t) be similar to
the random X(¢) in Example 5.2.10, but assume that O is
uniformly distributed between 0 and 7

We have
m, (t) = E[Acos(2Af t + ©)]

=A J‘Oﬂ% cos@2Aft+60)do
= —£Asin(27f,t)
m(t) is not independent of ¢, the process Y(¢) is not WSS

From the definition of autocorrelation function, it follows
that R ,(¢,,t,)=R,(t,,t,). It X(¢) is WSS, we have R (T)=R,(-T),
i.e., the autocorrelation function is an even function in WSS

pl‘OCGSSGS
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Multiple Random Processes (1/2)

® Two random processes X(t) and Y(t) are independent it, for all
t,, ty, the random variables X(¢,) and Y(z,) are independent.
Similarly, X(t) and Y(t) are uncorrelated it X(t,) and Y(t,) are

uncorrelated for all ¢, ¢,

® The cross correlation between two random processes X(t) and
Y(t) is defined as

Ryy(t,t,) =E[X(£1) Y(1,)]

In other words, we have

Ryy(ty,t5)=Ryx(ty,t1)




Multiple Random Processes (2/2)

® Two random processes X(t) and Y(t) are jointly WSS, if both
X(r) and Y(r) are individually WSS and the cross correlation
Ry\(t,,t,) depends only on T=t,-t,

* Note that for jointly WSS random processes, from the
definition and the relation R,,(t,,t,)=Ry(t,,t,), it follows that

Ry (7) =Ry (-7)

* Example 5.2.12. Assume that the two random processes X()
and Y(z) are jointly WSS, determine the autocorrelation of
the process Z(t)=X(t)+Y(t)

* By detinition,

R,(t+7,t)=E[Z(t+7)Z(1)]
=E[(X({+2)+Y({t+7))(X({®)+Y(1))]
=Ry (7) + Ry (7) + Ryy (7) + Ry (=7)

/




e

Random Processes and Linear
Systems (1/7)

® When a random process passes through a linear time-

invariant system, the output is also a random process

® We assume that a WSS process X(¢) is the input to a linear
time-invariant system with the impulse response h(z) and the

output process is denoted by Y(t)




Random Processes and Linear
Systems (2/7)

* We will demonstrate that it a WSS process X(t) with mean m,
and autocorrelation function R(T) is passed through a linear
time-invariant system with impulse response h(t), the input

and output process X(z) and Y(t) will be jointly WSS with
m, =m, [ h(t)dt
Ry (7) =Ry (z) *h(-7)
Ry (7) = Ry (z) *h(z) *h(-7)
=R, (2) *h(-) *h(r)
=Ry (7)*h(7)




Random Processes and Linear
Systems (3/7)

* By using the convolution integral to relate the output Y(z) to
the input X(r), we have

ELY ()] = E[ [” X(@h —Z')dT:|

- ‘1 E[X (c)]h(t-7)dz

= m, h(t—7)dr

u=t-r

= m, fwh(u)du =m,

e This proves that m, is independent of t

(-




Random Processes and Linear
Systems (4/7)

® The cross correlation function between the output and the
input is
E[X (L)Y (t,)] = E[X )] X ()N, - s)ds}
= .'°° E[X (t,) X (s)]h(t, —s)ds
= Ry (t, —s)h(t, —s)ds

ust2

j R, (t, —t, —u)h(-u)du
- Lo R, (z—u)h(-u)du

=Ry () *h(-7) =Ry (7)
® Ryy(t;,t,) depends only on T=t,-t,

(-




Random Processes and Linear
Systems (b/7)

® The autocorrelation function of the output is

EY (t)Y (t,)] = EK [ X (), - s)ds)Y (tz)}

= [ Ry (s=t,)h(t, —s)ds
u=s-t,

— j“; R, (U)h(t, —t, —u)du
= Ryy (7) *h(z)
=Ry (7) *h(-7)*h(z)
® Ry(t;t,) and R,,(t,,t,) depend only on T=t,-t,. Thus, the

output process is WSS. The input and output processes are

jointly WSS
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Random Processes and Linear

Systems (6/7)

o Example 5.2.13. Assume a WSS process passes through a
differentiator. What are the mean and autocorrelation
functions of the output? What is the cross correlation

between the input and output?
* In a differentiator, h(t)=0’(t). Since 0’(¢) is odd, it follows
that
m, =my [ &'(t)dt=0
The cross correlation function between output and input is
Ry (7) =Ry (2) %6 (=7) = =Ry (r) ¥ 5 (r) = —5- Ry (7)
and the autocorrelation function of the output is

Ry () =—4- Ry (7) %5 (1) = _% Ry (7)

(-
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Random Processes and Linear
Systems (7/7)

Example 5.2.14. Repeat Example 5.2.13 for the case where
the LTI system is a quadrature filter defined by h(t) = L
therefore, H(f)=-jsgn(f). In this case, the output of the filter
is the Hilbert transtorm of the input

We have
m, =m, _f Ldt=0
The cross correlation function is
Ryy () =Ry (7) * 2 =—Rx(7)
and the autocorrelation function of the output is

R, (r) = Ry (1) %% =R () = Ry (2)

where we assume that the R (T) has no DC component

/




Power Spectral Density of WSS
Processes (1/0)

If the signals of the random process are slowly varying, then
the random process will mainly contain low frequencies and

its power will be rnostly concentrated at low frequencies

If the signals change very fast, then most of the power in the

random process will be at the high frequency components

A useful function that determines the distribution of the
power of the random process at different frequencies is the

power spectral density or power spectrum of the random process

The power spectral density of a random process X(t) is
denoted by S,(f), and denotes the strength of the power in

the random process as a function of frequency

The unit of S(f) is Watts/Hz




Power Spectral Density of WSS
Processes (2/0)

® For WSS processes, the Wiener-Khinchin theorem relates the
power spectrum of the random process to its autocorrelation

function

* Wiener-Khinchin Theorem. For a WSS random process
X(t), the power spectral density is the Fourier transtorm of

the autocorrelation function, i.e.,

Sy()=- 7 R(D)]
° Example 5.2.15. For the WSS random process

X(t)=Acos(2Tft+0), we have
R, (7) = 4-cos2Af,7)

Hence,

[ -, S, (1) =£[5(F — )+ 5(F + )]
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Power Spectral Density of WSS
Processes (3/0)

* Example 5.2.15. (Cont’d) All the power content of the
process is located at f, and —f, because the sample functions

of this process are sinusoids with their power at those

frequencies
Sx(/) 4
A? A?
Figure 517 Power spectral
—~ - R — Pu— > density of the random
Jo fo i process of Example 5.2.15.

/




Power Spectral Density of WSS
Processes (4/0)

® The power content, or simply the power, of a random process
is the sum of powers at all frequencies in that random process.

This means

P =[Sy (f)df
® Since S,(f) is the Fourier transform of R(T), then R,(T) will
be the inverse Fourier of §,(f). We have

Ry (r) =[Sy (f)el™df.
Substituting T=0 into this relation yields

R, (O):_[:SX(f)df.
We conclude that

Py=Rx(0)

(-




Power Spectral Density of WSS
Processes (5/0)

® The power in a WSS random process can be found either by
integrating its power spectrai density or substituting T=0 in

the autocorrelation function of the process

° Example 5.2.17. Find the power in the process given in
Exampie 5.2.15.

® Notice that
and R, (r) =4 cos(2f,r)

Sx(f):AT2[§(f — fo)+o(f + 1)l




e
Power Spectral Density of WSS

Processes (6/0)

° Example 5.2.17. (Cont’d) We can use either the relation
P =[ S, (f)df

=[S~ )+ (8 + 1)1

or the relation

= A? cos(24f,7)
A2

&b 2

7=0




Power Spectra in LTI Systems (1/5)

® We have proved that when a WSS process with mean m and
autocorrelation R (T) passes through a LTI system with the
impulse response h(t), the output process will be also WSS

with mean
m, =m, [ h(t)dt
and autocorrelation
Ry (7) = Ry (2) *h(z) *h(=7).
® Note X(r) and Y(r) will be jointly WSS with the cross-

correlation function

Ryy (7) =Ry (7) *h(-7)




Power Spectra in LTI Systems (2/5)

* We can compute the Fourier transform of both sides of these

relations to obtain
m, =m, H(0)
Sy (f)=Sy (F)H(F)[
* Note that we already use . / [A(-T)]=H"(f)

® The first equation says that the mean value of the response of
the system only depends on the value of H(f) at /=0 (DC

response)

® The second equation says that when dealing with the power
spectrum, the phase of H(f) is irrelevant; only the magnitude
of H(f) aftects the output power spectrum




Power Spectra in LTI Systems (3/5)

* It a random process passes through a ditferentiator, we have

H(f)=j27f; hence,
m, =m,H(0)=0

SY(f)=47z2fZSX(f)
® [et us define the cross spectral densit)/ S XY(f as

S (=7 TRy(D].
Then

SD=SxHH"(f),

and since R, (T)=R,,(-T), we have

S =S" (N =SxHH()
(Hint: R, (T) is real and even, . /[R,(T)]=S,(f) is real and even.)

/




Power Spectra in LTI Systems (4/5)

* Note that §,(f) and S,(f) are real non-negative functions, S,(f)

and Sy,(f) can generally be complex functions

Ayl ) e )

= B —"5xv(])

Sx(f) > > H(f) > Syx(f)

Figure 5.18 Input—output relations for the
! |H( )P > S¥(f) gowe?r spectral density and the cross spectral
ensity.




Power Spectra in LTI Systems (5/5)

* Example 5.2.18. If the process in Example 5.2.2 passes
through a differentiator, we have H(f)=;2mf. Since
X(t)=Acos(2Tft+0), O is uniformly distributed between 0
and 277. Then,

Sx(f):ATz[a(f —fo)+o(f + 1)l
® Therefore,
S, (f) =472 ?[&[5(F — f,)+5(f + f,)]]

and

Sy ()= (=§24F)S, (f) ==L [5(f — f)+S(f + )]




Power Spectral Density of a Sum
Process (1/4)

® Let Z(t)=X(t)*+Y(t), where X(t) and Y(t) are jointly WSS
processes
® We already know that Z(z) is a WSS process with
RAD=R(DFR(DFRGUTFR(T)  (5.2.21)
® We have R,,(T)=Ry,(-T). From this information, conclude

that S, ()=5", ()
* Taking the Fourier transform of both sides of Eq. (5.2.21),

we have

S, D=Sx(NTSy(NFTSxy(DTSyx(f)
=SyH TSN SN+ Sy ()
:SX(f)—I—SY(f)-I-ZRe[SXY(f)]

©




Power Spectral Density of a Sum
Process (2/4)

® The power spectral density of the sum process is the sum of
the power spectra of the individual processes plus a third
term, which depends on the cross correlation between the
two processes

* If two WSS processes X(t+T) and Y(t) are uncorrelated, then
we have

COV(X(t+ T),Y(t))
= E[X(t4T) Y(6)]-E[X(t+T) | E[Y(2)]
=0
Thus, we have
EIX(t+T)Y(t)|=E|X(t+T)]|E[Y(?)]

—Mymy




Power Spectral Density of a Sum
Process (3/4)

* If at least one of the processes is zero mean, we will have

R,(7)=0 and

S7D=Sx(D+54(f)

* Example 5.2.20. Let the random process X(z) is defined as
X(t)=Acos(2Tf t+0), where A and f, denote the fixed
amplitude and frequency and ® denotes the random phase. ©
is uniformly distributed between 0 and 277. Let

Z(t) = X(t) + 5 X (1) . Please find SAf).
® Let Y(t)=dX(t)/dt and h(¢) be the impulse response of a
differentiator. Y(¢) and X(¢) are the output and input

processes of the differentiator, respectively

(-




e
Power Spectral Density of a Sum

Process (4/4)

e Example 5.2.20. (Cont'd) From previous examples, we know that
H(f)y=j2mtfand S, (f)=4-[5(f - f,)+5(f + f,)]. Then,
va(f):Sx(f)H*(f)
== 5 [0(F = fo)+5(f + )]

therefore,
Re[SXY ( f )] =0
From Example 5.2.18, we also know that

S, (f)= A2 [0(f — f,)+0(f + f,)].

S,()=8,(f)+5,(f)
= A (3 + 72 ) [8(F — f) +8(f + £,)]

® Hence

(-




