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Chapter 2  Signals and Linear 

Systems (V) 
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 Filters are widely used to separate desired signals from 

undesired signals and interference 

 The desired filter characteristics are specified in the 

frequency domain, in terms of the desired magnitude and 

phase response of the filter 

 In filter design, we determine the coefficients of a causal 

filter that closely approximates the desired frequency 

response specifications 

 There are a variety of filter types, both analog and digital. We 

are particularly interested in the design of digital filters, 

because they are easily implemented in software on a 

computer 
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 Digital filters are generally classified as having either a finite 
duration impulse response (FIR) or an infinite duration 
impulse response (IIR) 

 An FIR filter characterized in the z-domain can be 
represented by the system function 

 

 

    where {h(k),0≦k≦M-1} is the impulse response of the 
filter 

 The frequency response of the filter is obtained by evaluating 
H(z) on the unit circle, i.e., by substituting z=ejω in H(z) to 
yield H(ω) 
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 In the discrete-time domain, the FIR filter is characterized by 

the (difference) equation 

 

 

    where {x(n)} is the input sequence to the filter and y(n) is 

the output sequence 

 An IIR filter has both poles and zeros, and it is generally 

characterized in the z-domain by the rational system function 

 

 

    {a(k)} and {b(k)}are the filter coefficients 







1

0

)()()(
M

k

knxkhny


















N

k

k

M

k

k

zka

zkb
zH

1

1

0

)(1

)(
)(



Filter Design (4/7) 

5 

 The frequency response H(ω) is obtained by evaluating H(z) 

on the unit circle 

 In the discrete-time domain, the IIR filter is characterized by 

the difference equation 
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 In practice, FIR filters are employed in filtering problems 

where there is a requirement of a linear-phase characteristic 

within the pass band of the filter 

 If there is no requirement for a linear-phase characteristic, 

either an IIR or an FIR filter may be employed 

 In general, if some phase distortion is either tolerable or 

unimportant, an IIR filter is preferable, primarily because the 

implementation involves fewer coefficients and consequently 

has a lower computational complexity 



Filter Design (6/7) 

7 

 



Filter Design (7/7) 

8 

 In a filter design problem, we usually specify several filter 

parameter 

 The maximum tolerable passband ripple 

 The maximum tolerable stopband ripple 

 The passband-edge frequency fp 

 The stopband-edge frequency fs 

 On the basis of these specifications, we select the filter 

coefficients that are closest to the desired frequency response 

specifications 
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 The energy and power of a signal represent the energy or 

power delivered by the signal when it is interpreted as a 

voltage or current source feeding a 1-ohm resistor 

 The energy content of a (generally complex-valued) signal x(t) 

is defined as 

 

    and the power content of a signal is 

 

 

 A signal is energy-type if Ex<∞, and it is power-type if 

0<Px< ∞ 





 dttxEx

2|)(|




2

2

2|)(|
1

lim
T

T
dttx

T
P

T
x



Power and Energy (2/2) 

10 

 A signal cannot be both power- and energy-type because 

Px=0 for energy-type signals and Ex=∞ for power-type 

signals 

 A signal can be neither energy-type nor power-type 

 Practically, all periodic signals are power-type and have 

power 

 

    where T0 is the period and α is any arbitrary real number 
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 For an energy-type signal x(t), we define the autocorrelation 
function 

                    Rx(τ)=x(τ)★x*(-τ) 

 

 

 

 By setting τ=0, we obtain its energy content, i.e., 

 

 

 Using the autocorrelation property of the Fourier transform 
(see Sec. 2.3.2), we derive the Fourier transform of Rx(τ) to 
be |X(f)|2. (Hint: F  [x*(-τ)]=X*(f)) 
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 Employing Rayleigh’s theorem, we have 

 

 

 If we pass the signal x(t) through a filter with the (generally 

complex) impulse response h(t) and frequency response H(f), 

the output will be y(t)=x(t)★h(t) and in the frequency 

domain Y(f)=X(f)H(f) 

 The energy content of the output signal y(t) is 
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 The inverse Fourier transform of |Y(f)|2 is 

                       Ry(τ)=F   -1[|Y(f)|2] 
                                               =F   -1[|X(f)|2|H(f)|2] 
                                               =F   -1[|X(f)|2 ] ★ F   -1 [|H(f)|2] 
                                                =Rx(τ) ★ Rh(τ) 

 Now let us assume that 
                                                         W<f<W+ΔW   

                                                           otherwise 

     Then  

                                             W<f<W+ΔW   

                                                                     otherwise 
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 We thus have 

 

 

     This means that |X(W)|2ΔW is the amount of energy in x(t), 

which is located in the bandwidth [W,W+ΔW].  

 This shows why |X(f)|2  is called the energy spectral density of a 

signal x(t), and why it represents the amount of energy per 

unit bandwidth present in the signal at various frequencies 

 We define the energy spectral density (or energy spectrum of 

the signal x(t)) as 

                              G x(f)=|X(f)|2=F  [Rx(τ)] 
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 To summarize, 

 For any energy-type signal x(t), we define the autocorrelation 

function Rx(τ)= x(τ)★x*(-τ) 

 The energy spectral density of x(t), denoted by G x(f), is the 

Fourier transform of Rx(τ). It is equal to |X(f)|2 

 The energy content of x(t), Ex, is the value of the 

autocorrelation function evaluated at τ=0 or, equivalently, the 

integral of the energy spectral density over all frequencies, i.e.,  

                                  Ex=Rx(0) 

                                                           G x(f)                          df
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 To summarize, (Cont’d) 

 If x(t) is passed through a filter with the impulse response h(t) 

and the output is denoted by y(t), we have 

                          y(t)= x(t)★h(t) 

                          Ry(τ)= Rx(τ)★Rh(τ) 

                G y(f)=G x(f)G h(f)=|X(f)|2|H(f)|2 
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 Example 2.5.1. Determine the autocorrelation function, 

energy spectral density, and energy content of the signal 

x(t)=e-αtu-1(t), α>0 

 First we find the Fourier transform of x(t) 

 

    Hence,  

                      G x(f)=|X(f)|2= 

      and               

                       Rx(τ)=F   -1[|X(f)|2]= 

      The energy content is 
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 Example 2.5.2. If the signal in the preceding example is 
passed through a filter with impulse response h(t)=e-βtu-1(t), 
β>0, β≠α, determine the autocorrelation function, the 
energy spectral density, and the energy content of the signal 
at the output 

 The frequency response of the filter is 

 

    Therefore, 

                      |Y(f)|2=|X(f)|2|H(f)|2. 

    Note that 

                       Ry(τ)= F   -1 [|Y(f)|2] 

     and  

                                    Ey=Ry(0) 
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 We define time-average autocorrelation function of  the power-

type signal x(t) as 

 

 

 The power content of the signal can be obtained from 

 

 

 We define the power-spectral density or the power spectrum of x(t) 

to be the Fourier transform of Rx(τ) 

                             Sx(f)=F    [Rx(τ)] 
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 We can express the power content of the signal x(t) in terms 

of Sx(f) by noting that 

                      

 

 If a power-type signal is passed through a filter with impulse 

response h(t), the output is 

 

    and the time-average autocorrelation function for the output 

signal is   

)0(xx RP 





 dffSx )(





  dthxty )()()(




2

2

)()(
1

lim)( *
T

T
dttyty

T
R

T
y 



Power Type Signals (3/7) 

21 

 Substituting for y(t), we obtain 

 

 

    By making a change of variable w=t-u and changing the order 

of integration, we obtain 
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 Taking the Fourier transform of both sides of the above 

equation, we obtain 

                            Sy(f)=Sx(f)H(f)H*(f) 

                                   =Sx(f)|H(f)|2 

 Sx(f) represents the amount of power at various frequencies 

 Assume the signal x(t) is a periodic signal with the period T0 

and has the Fourier-series coefficients {xn}. We have 
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 If we substitute the Fourier-series expansion of the periodic 

signal in this relation, we obtain 

 

 

    Now, using the fact that  

 

 

    we obtain 

 

 We see that the time-average autocorrelation function of a 

periodic signal is itself periodic 
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 To determine the power-spectral density of a periodic signal, 

we can simply find the Fourier series of x(t) 

 We expect the power is concentrated at discrete frequencies 

(the harmonics). The power spectral density of a periodic 

signal is given by 

 

 

 To find the power content of a periodic signal, we must 

integrate over the whole frequency spectrum; we obtain 
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 If this periodic signal passes through an LTI system with the 

frequency response H(f), the output will be periodic and the 

power spectral density of the output can be obtained by 

employing the relation between the power spectral densities 

of the input and the output of a filter. Thus, 

 

 

 

 The power content of the output signal is 
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 The Hilbert transform of a signal x(t) is a signal         whose 

frequency components lag the frequency components of x(t) 

by 90o 

 The Hilbert transform is unlike many other transforms 

because it does not involve a change of a domain 

 The Hilbert transform is not equivalent to the original signal, 

rather it is a completely different signal 

 The Hilbert transform does not involve a domain change, i.e., 

the Hilbert transform of a signal x(t) is another signal 

denoted by         in the same domain )(
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 A delay of π/2 at all frequencies means that ej2πf0t will 

become ej(2πf0t-π/2) =-jej2πf0t and e-j2πf0t will become e-j(2πf0t-π/2) 

=je-j2πf0t. In other words, at positive frequencies, the 

spectrum of the signal is multiplied by –j; at negative 

frequencies, it is multiplied by +j. This is equivalent to saying 

that the spectrum (Fourier transform) of the signal is 

multiplied by –jsgn(f). 

 We assume x(t) is real and has no DC component, i.e., 

X(f)|f=0=0 

 We have 

                       F    [     ]=-jsgn(f)X(f) )(
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tx
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 The Hilbert transform of x(t)=Acos(2πf0t+θ) is  

            =Acos(2πf0t+θ-90o)= Asin(2πf0t+θ) 

 

 Using Table 2.1, we have 

                     F   -1 [-jsgn(f)]=1/πt 

    Hence,  

                                  

 

    Thus, the operation of the Hilbert transform is equivalent to 
a convolution, i.e., filtering 
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 Example. 2.6.1. Determine the Hilbert transform of the 

signal x(t)=2sinc(2t) 

 We use the frequency-domain approach to solve the problem. 

We have, 

                       F 

      The first term contains all the negative frequencies and the 

second term contains all the positive frequencies 

 We use the relation F                              F            , which 

results in      

                      F 

     Taking the inverse Fourier transform, we have 
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 x(t) and y(t) are orthogonal if  
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 The Hilbert transform of an even and real signal is odd. The 

Hilbert transform of an odd and real signal is even. 

 If x(t) is even and real signal, then X(f) is real and even 

function; therefore, -jsgn(f)X(f) is an imaginary and odd 

function. Hence, its inverse Fourier transform          is odd 

and real  

 If x(t) is odd and real, then X(f) is imaginary and odd; thus  

   –jsgn(f)X(f) is real and even. Therefore,         is even and real 
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 Applying the Hilbert-transform operation to a signal twice 

causes a sign reversal of the signal, i.e.,  

 

 Since  

                      F    [      ]=-jsgn(f)X(f) 

                       

                              F    [      ]=-jsgn(f)F    [      ]=[-jsgn(f)]2X(f) 

    thus,                        

                             F    [      ]=-X(f), 
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 The energy content of a real signal is equal to the energy 

content of its Hilbert transform 

 Using Rayleigh’s theorem of the Fourier transform, we have 

 

    and  

 

    Using the fact that |-jsgn(f)|2=1 except for f=0, and the  

fact that X(f) does not contain any impulses at the origin 

completes the proof 
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 The real signal x(t) and its Hilbert transform are orthogonal  

 Using Parseval’s theorem of the Fourier transform, we obtain 

 

 

 

 

 

 

     Note, in the last step, we have used the fact that X(f) is 

Hermitian; therefore, |X(f)|2 is even 
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 A lowpass signal is a signal in which the spectrum (frequency 

content) of the signal is located around the zero frequency 

 A bandpass signal is a signal with a spectrum far from the 

zero frequency. The frequency spectrum of a bandpass signal 

is usually located around a frequency fc, which is much higher 

than the bandwidth of the signal 

 The bandwidth of the bandpass signal is usually much less 

than the frequency fc, which is close to the location of the 

frequency content 



Lowpass and Bandpass Signals (2/7) 

36 

 The extreme case of a bandpass signal is a single frequency 

signal whose frequency is equal to fc. The bandwidth of this 

signal is zero. It can be written as 

                           x(t)=Acos(2πfct+θ) 

 This sinusoidal signal can be represented by a phasor 

                                    xl=Aejθ 

    A is positive and the range of θ is –π to π 
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 The projection of the phasor on the real axis is                 

                    x(t)=Acos(2πfct+θ) 

 We can expand the signal x(t) as 

                   x(t)=Acos(2πfct+θ)          

                        =Acos(θ)cos(2πfct)-Asin(θ)sin(2πfct) 

                        =xccos(2πfct)-xssin(2πfct) 

    xc=Acos(θ) is called the in-phase component. The other 

component xs=Asin(θ) is called quadrature component 

 We can also write  

                      xl=Aejθ=xc+jxs 
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 Assume that we have a phasor with slowly varying magnitude 

and phase. This is represented by 

                                  xl(t)=A(t)ejθ(t), 

      where A(t) and θ(t) are slowly varying signals (compared to fc)  

       We have 

                  x(t)=Re[A(t)ej(2πfct+θ(t))] 

                        =A(t)cos(θ(t))cos(2πfct)-A(t)sin(θ(t))sin(2πfct) 

                        =xc(t)cos(2πfct)-xs(t)sin(2πfct) 

 This signal contains a range of frequencies; therefore, its 

bandwidth is not zero 
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 The spectra of three bandpass signals are shown in Fig. 2.51 
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 The in-phase and quadrature components are 

              

 

     and we have 

 

 Note that both the in-phase and quadrature components of a 

bandpass signal are slowly varying signals; therefore, they are 

both lowpass signals 

 The complex lowpass signal xl(t)=xc(t)+jxs(t) is called the 

lowpass equivalent of the bandpass signal x(t) 
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 If we represent xl(t) in polar coordinates, we have 

 

    Now if we define the envelope and the phase of the bandpass 

signal as 

 

     

    we can express xl(t) as  

 

  In summary, we have              
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