Chapter 2 Signals and Linear Systems (IV)

Basic Properties of the Fourier Transform (1/38)

- Linearity. The Fourier-transform operation is linear. That is, if $x_{1}(t)$ and $x_{2}(t)$ are signals with Fourier transforms $X_{1}(f)$ and $X_{2}(f)$ respectively, the Fourier transform of $\alpha_{x_{1}}(t)+\beta_{x_{2}}(t)$ is $\alpha X_{1}(f)+\beta X_{2}(f)$, where α and β are two arbitrary (real or complex) scalars
- Example 2.3.4. Determine the Fourier transform of $u_{-1}(t)$. The unit-step signal can be rewritten as

$$
u_{-1}(t)=\left\{\begin{array}{l}
\frac{1}{2}+\frac{1}{2} \operatorname{sgn}(t), t \neq 0 \\
1,
\end{array}\right.
$$

We have

$$
\begin{aligned}
\mathscr{F}\left[u_{-1}(t)\right] & =\mathscr{F}\left[\frac{1}{2}+\frac{1}{2} \operatorname{sgn}(t)\right] \\
& =\frac{1}{2} \delta(f)+\frac{1}{j 2 \pi f}
\end{aligned}
$$

Basic Properties of the Fourier Transform (2/38)

- Duality. If $X(f)=\mathscr{F}[x(t)]$ then

$$
x(f)=\mathscr{F}[X(-t)]
$$

and

$$
x(-f)=\mathscr{F}[X(t)]
$$

- To show this property, we begin with the inverse Fouriertransform relation

$$
x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f
$$

Then, we introduce the change of variable $u=-f$ to obtain

$$
x(t)=\int_{-\infty}^{\infty} X(-u) e^{-j 2 \pi u t} d u
$$

Let $t=f$, we have

$$
x(f)=\int_{-\infty}^{\infty} X(-u) e^{-j 2 \pi t f} d u
$$

Basic Properties of the Fourier Transform (3/38)

- Finally, substituting t for u, we get

$$
x(f)=\int_{-\infty}^{\infty} X(-t) e^{-j 2 \pi f} d t
$$

or

$$
x(f)=\mathscr{F}[X(-t)] .
$$

- Using the same technique once more, we obtain

$$
x(-f)=\mathscr{F}[X(t)]
$$

Basic Properties of the Fourier Transform (4/38)

- Example 2.3.5. Determine the Fourier transform of $\operatorname{sinc}(t)$.

Note that $\Pi(t)$ is an even signal and, therefore, that $\Pi(f)=$ $\Pi(-f)$. We can use the duality theorem to obtain

$$
\mathscr{F}[\operatorname{sinc}(t)]=\Pi(f)=\Pi(-f)
$$

- Example 2.3.6. Determine the Fourier transform of $1 / t$.

We already have
to have

$$
\mathscr{F}[\operatorname{sgn}(t)]=\frac{1}{j \pi f}
$$

$$
\mathscr{F}\left[\frac{1}{j \pi t}\right]=\operatorname{sgn}(-f)=-\operatorname{sgn}(f)
$$

By the linearity theorem, we have

$$
\mathscr{F}\left[\frac{1}{t}\right]=-j \pi \operatorname{sgn}(f)
$$

Basic Properties of the Fourier Transform (5/38)

- Shift in Time Domain. A shift of t_{0} in the time origin causes a phase shift of $-2 \pi f t_{0}$ in the frequency domain. In other words,

$$
\mathscr{F}\left[x\left(t-t_{0}\right)\right]=e^{-j 2 \pi f t_{0}} \mathscr{F}[x(t)] .
$$

To prove this, we have

$$
\mathscr{F}\left[x\left(t-t_{0}\right)\right]=\int_{-\infty}^{\infty} x\left(t-t_{0}\right) e^{-j 2 \pi t} d t
$$

With a change of variable of $u=t-t_{0}$, we obtain

$$
\begin{aligned}
\mathscr{F}\left[x\left(t-t_{0}\right)\right] & =\int_{-\infty}^{\infty} x(u) e^{-j 2 \pi t_{0}} e^{-j 2 \pi f u} d t \\
& =e^{-j 2 \pi t_{0}} \int_{-\infty}^{\infty} x(u) e^{-j 2 \pi f u} d t \\
& =e^{-j 2 \pi t_{0}} \mathscr{F}[x(t)]
\end{aligned}
$$

Basic Properties of the Fourier Transform (6/38)

- Example 2.3.7. Determine the Fourier transform of the signal shown in Fig. 2.37.
- We have

$$
x(t)=\Pi\left(t-\frac{3}{2}\right) .
$$

By applying the shift theorem, we obtain

$$
\mathscr{F}[x(t)]=e^{-j 2 \pi f \times \frac{3}{2}} \sin c(f)=e^{-j 3 \pi f} \sin c(f) .
$$

Figure 2.37 Signal $x(t)$.

Basic Properties of the Fourier Transform (7/38)

- Example 2.3.8. Determine the Fourier transform of the impulse train

$$
x(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{0}\right)
$$

- The Fourier-series expansion of ${ }_{\infty}^{x}(t)$ can be represented as

$$
x(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{0}\right)=\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} e^{j 2 \pi \frac{n}{T_{0}} t}
$$

Taking the Fourier transform of both sides of the above equation, we obtain

$$
X(f)=\frac{1}{T_{0}} \sum^{\infty} \delta\left(f-n \frac{1}{T_{0}}\right)
$$

If we replace $1 / T_{0}$ with $f_{0}^{n-\infty}, X(f)$ can be written as

$$
X(f)=f_{0} \sum_{n=-\infty}^{\infty} \delta\left(f-n f_{0}\right) .
$$

Basic Properties of the Fourier Transform (8/38)

- Scaling. For any real $a \neq 0$, we have

$$
\mathscr{F}[x(a t)]=\frac{1}{|a|} X\left(\frac{f}{a}\right) .
$$

- To see this, we note that

$$
\mathscr{F}[x(a t)]=\int_{-\infty}^{\infty} x(a t) e^{-j 2 \pi f t} d t
$$

and make the change in variable $u=a t$. Then,

$$
\begin{aligned}
\mathscr{F}[x(a t)] & =\frac{1}{|a|} \int_{-\infty}^{\infty} x(u) e^{-j 2 \pi f u / a} d u \\
& =\frac{1}{|a|} X\left(\frac{f}{a}\right)
\end{aligned}
$$

- Note that in the pervious expression, if $|a|>1$, then $x(a t)$ is a contracted form of $x(t)$, whereas if $|a|<1, x(a t)$ is an expanded version of $x(t)$

Basic Properties of the Fourier Transform (9/38)

- If we expand a signal in the time domain, its frequencydomain representation (Fourier transform) contracts; if we contract a signal in the time domain, its frequency domain representation expands
- Since contracting a signal in the time domain makes the changes in the signal more abrupt, thus increasing its frequency content

Basic Properties of the Fourier Transform (10/38)

- Example 2.3.9. Determine the Fourier transform of the signal

$$
x(t)=\left\{\begin{array}{cc}
3 & 0 \leq t \leq 4 \\
0 & \text { otherwise. }
\end{array}\right.
$$

- $x(t)$ can be represented as $x(t)=3 \Pi\left(\frac{t-2}{4}\right)$. Using the linearity, time shift, and scaling properties, we have

$$
\begin{aligned}
\mathscr{F}\left[3 \Pi\left(\frac{t-2}{4}\right)\right] & =3 e^{-4 j \pi f} \mathscr{F}\left[\Pi\left(\frac{t}{4}\right)\right] \\
& =12 e^{-j 4 \pi f} \sin c(4 f)
\end{aligned}
$$

Basic Properties of the Fourier Transform (11/38)

- Convolution. If the signals $x(t)$ and $y(t)$ both possess

Fourier transforms, then

$$
\mathscr{F}[x(t) \star y(t)]=\mathscr{F}[x(t)] \cdot \mathscr{F}[y(t)]=X(f) \cdot Y(f)
$$

- For a proof, we have

$$
\begin{aligned}
\mathscr{F}[x(t) \star y(t)] & =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d \tau\right] e^{-j 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} x(\tau)\left[\int_{-\infty}^{\infty} y(t-\tau) e^{-j 2 \pi f(t-\tau)} d t\right] e^{-j 2 \pi f \tau} d \tau
\end{aligned}
$$

Now with the change of variable $u=t-\tau$, we have

$$
\int_{-\infty}^{\infty} y(t-\tau) e^{-j 2 \pi f(t-\tau)} d t=\int_{-\infty}^{\infty} y(u) e^{-j 2 \pi f u} d u=Y(f)
$$

Therefore,

$$
\mathscr{F}[x(t) \star y(t)]=\int_{-\infty}^{\infty} x(\tau)[Y(f)]^{-j 2 \pi f \tau} d \tau=X(f) \cdot Y(f)
$$

Basic Properties of the Fourier Transform (12/38)

- Finding the response of an LTI system to a given input is much easier in the frequency domain than it is the time domain. This theorem is the basis of the frequency-domain analysis of LTI systems
- Example 2.3.10. Determine the Fourier transform of the signal $\Lambda(t)$
- It is enough to note that $\Lambda(t)=\Pi(\mathrm{t}) \star \Pi(\mathrm{t})$ and use the convolution theorem.

We obtain

$$
\mathscr{F}[\Lambda(t)]=\mathscr{F}[\Pi(\mathrm{t})] \cdot \mathscr{F}[\Pi(\mathrm{t})]=\operatorname{sinc}^{2}(f)
$$

Basic Properties of the Fourier Transform (13/38)

- Modulation. The Fourier transform of $x(t) e^{j 2 \pi f_{0} t}$ is $X\left(f-f_{0}\right)$
- To show this relation, we have

$$
\begin{aligned}
\mathscr{F}\left[x(t) e^{j 2 \pi f_{0} t}\right] & =\int_{-\infty}^{\infty} x(t) e^{j 2 \pi f_{0} t} e^{-j 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi\left(f-f_{0}\right) t} d t \\
& =X\left(f-f_{0}\right)
\end{aligned}
$$

- Example 2.3.12. Determine the Fourier transform of $x(t)=e^{j 2 \pi f_{0} t}$.

$$
\begin{aligned}
\mathscr{F}\left[e^{j 2 \pi f_{0} t}\right] & =\mathscr{F}\left[1 e^{j 2 \pi f_{0} t}\right] \\
& =\delta\left(f-f_{0}\right)
\end{aligned}
$$

Note that since $x(t)$ is not real, its Fourier transform does not have the Hermitian symmetry

Basic Properties of the Fourier Transform (14/38)

- Example 2.3.13. Determine the Fourier transform of the signal $\cos \left(2 \pi f_{0} t\right)$
We have

$$
\begin{aligned}
\mathscr{F}\left[\cos \left(2 \pi f_{0} t\right)\right] & =\mathscr{F}\left[\frac{1}{2} e^{j 2 \pi f_{0} t}+\frac{1}{2} e^{-j 2 \pi f_{0} t}\right] \\
& =\frac{1}{2} \delta\left(f-f_{0}\right)+\frac{1}{2} \delta\left(f+f_{0}\right)
\end{aligned}
$$

- Example 2.3.14. Determine the Fourier transform of the signal $x(t) \cos \left(2 \pi f_{0} t\right)$
We have

$$
\begin{aligned}
\mathscr{F}\left[x(t) \cos \left(2 \pi f_{0} t\right)\right] & =\mathscr{\mathscr { F }}\left[\frac{1}{2} x(t) e^{j 2 \pi f_{0} t}+\frac{1}{2} x(t) e^{-j 2 \pi f_{0} t}\right] \\
& =\frac{1}{2} X\left(f-f_{0}\right)+\frac{1}{2} X\left(f+f_{0}\right)
\end{aligned}
$$

Basic Properties of the Fourier Transform (15/38)

Figure 2.38 Effect of modulation in both the time and frequency domain.

Basic Properties of the Fourier Transform (16/38)

- Example 2.3.15. Determine the Fourier transform of the signal

$$
x(t)=\left\{\begin{array}{l}
\cos (\pi t) \quad|t| \leq \frac{1}{2} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Figure 2.39 Signal $x(t)$.

Basic Properties of the Fourier
 Transform (17/38)

- Example 2.3.15. (Cont'd)

Note that $x(t)$ can be expressed as

$$
x(t)=\Pi(t) \cos (\pi t)
$$

Therefore,

$$
\mathscr{F}[\Pi(t) \cos (\pi t)]=\frac{1}{2} \sin c\left(f-\frac{1}{2}\right)+\frac{1}{2} \sin c\left(f+\frac{1}{2}\right)
$$

Basic Properties of the Fourier Transform (18/38)

- Parseval's Relation. If the Fourier transforms of the signals $x(t)$ and $y(t)$ are denoted by $X(f)$ and $Y(f)$ respectively, then

$$
\int_{-\infty}^{\infty} x(t) y^{*}(t) d t=\int_{-\infty}^{\infty} X(f) Y^{*}(f) d f
$$

- Rayleigh's theorem. If we substitute $y(t)=x(t)$ into Parseval's relation, we obtain

$$
\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d f
$$

Basic Properties of the Fourier Transform (19/38)

- Example 2.3.16. Use Parseval's relation or Rayleigh's theorem, determine the values of the integrals

$$
\int_{-\infty}^{\infty} \sin c^{4}(t) d t
$$

and

$$
\int_{-\infty}^{\infty} \sin c^{3}(t) d t
$$

- We have $\mathscr{F}\left[\operatorname{sinc}^{2}(t)\right]=\Lambda(f)$. Using Rayleigh's theorem with $x(t)=\operatorname{sinc}^{2}(t)$, we get

$$
\begin{aligned}
\int_{-\infty}^{\infty} \sin c^{4}(t) d t & =\int_{-\infty}^{\infty}|\sin c(t)|^{4} d t \\
& =\int_{-\infty}^{\infty}|\Lambda(f)|^{2} d f \\
& =\int_{-1}^{\infty}(f+1)^{2} d f+\int_{0}^{1}(-f+1)^{2} d f \\
& =\frac{2}{3}
\end{aligned}
$$

Basic Properties of the Fourier Transform (20/38)

- Example 2.3.16. (Cont'd)
- Note that $\mathscr{F}[\operatorname{sinc}(t)]=\Pi(f)$; therefore, by Parseval's theorem, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} \sin c^{3}(t) d t & =\int_{-\infty}^{\infty} \sin c^{2}(t) \sin c(t) d t \\
& =\int_{-\infty}^{\infty} \Pi(f) \Lambda(f) d f \\
& =1 \times \frac{1}{2}+\frac{1}{2} \times \frac{1}{2} \\
& =\frac{3}{4}
\end{aligned}
$$

Basic Properties of the Fourier Transform (21/38)

- Example 2.3.16. (Cont'd)

Figure 2.40 Prodicict of $\overline{1}$ and Λ.

Basic Properties of the Fourier Transform (22/38)

- Autocorrelation. The (time) autocorrelation function of the signal $x(t)$ is denoted by $R_{x}(\tau)$ and is defined by

$$
R_{X}(\tau)=\int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) d t
$$

The autocorrelation theorem states that

$$
\mathscr{F}\left[R_{x}(\tau)\right]=|X(f)|^{2}
$$

- We note that
and

$$
\begin{aligned}
R_{X}(\tau) & =\int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) d t \\
& =\int_{-\infty}^{\infty} x(t) x^{*}(-(\tau-t)) d t \\
& ={ }_{x}(\tau) \not \lambda^{*} x^{*}(-\tau)
\end{aligned} \begin{aligned}
\mathscr{F}\left[x^{*}(-\tau)\right] & =\int_{-\infty}^{\infty} x^{*}(-\tau) e^{-j 2 \pi f \tau} d \tau=\int_{-\infty}^{\infty} x^{*}(u) e^{j 2 \tau f u} d u \\
& =\left(\int_{-\infty}^{\infty} x(u) e^{-j 2 \pi f u} d u\right)^{*}=X^{*}(f)
\end{aligned}
$$

Basic Properties of the Fourier Transform (23/38)

- Differentiation. The Fourier transform of the derivative of a signal can be obtained from the relation

$$
\mathscr{F}\left[\frac{d}{d t} x(t)\right]=j 2 \pi f X(f)
$$

- To see this, we have

$$
\begin{aligned}
\frac{d}{d t} x(t) & =\frac{d}{d t} \int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f \\
& =\int_{-\infty}^{\infty} j 2 \pi f X(f) e^{j 2 \pi t} d f
\end{aligned}
$$

We then conclude that

$$
\mathscr{F}^{-1}[j 2 \pi f X(f)]=\frac{d}{d t} x(t)
$$

Or

$$
\mathscr{F}\left[\frac{d}{d t} x(t)\right]=j 2 \pi f X(f)
$$

Basic Properties of the Fourier Transform (24/38)

- With repeated application of the differentiation theorem, we obtain the relation

$$
\mathscr{F}\left[\frac{d^{n}}{d t^{n}} x(t)\right]=(j 2 \pi f)^{n} X(f)
$$

Basic Properties of the Fourier Transform (25/38)

- Example 2.3.17. Determine the Fourier transform of the signal shown in Fig. 2.41.

Figure 2.41 Signal $x(t)$.

Basic Properties of the Fourier Transform (26/38)

- Example 2.3.17. (Cont'd)
- Obviously, $x(t)=\frac{d}{d t} \Lambda(t)$. Therefore, by applying the differentiation theorem, we have

$$
\begin{aligned}
\mathscr{F}[x(t)] & =\mathscr{F}\left[\frac{d}{d t} \Lambda(t)\right] \\
& =j 2 \pi f \mathscr{F}[\Lambda(t)] \\
& =j 2 \pi f \operatorname{sinc}^{2}(f)
\end{aligned}
$$

Basic Properties of the Fourier Transform (27/38)

- Differentiation in Frequency Domain. We begin with

$$
\mathscr{F}[t x(t)]=\frac{j}{2 \pi} \frac{d}{d f} X(f)
$$

Repeated use of this theorem yields

$$
\mathscr{F}\left[t^{n} X(t)\right]=\left(\frac{j}{2 \pi}\right)^{n} \frac{d^{n}}{d f^{n}} X(f) .
$$

- To show this, we have

$$
\begin{gathered}
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t \\
\frac{d X(f)}{d f}=\int_{-\infty}^{\infty} x(t) \frac{d}{d f} e^{-j 2 \pi f t} d t \\
=\int_{-\infty}^{\infty}(-j 2 \pi t) x(t) e^{-j 2 \pi f t} d t \\
\frac{j}{2 \pi} \frac{d X(f)}{d f}=\int_{-\infty}^{\infty} t x(t) e^{-j 2 \pi f t} d t \\
\Rightarrow \mathscr{F}[t X(t)]=\frac{j}{2 \pi} \frac{d}{d f} X(f)
\end{gathered}
$$

Basic Properties of the Fourier Transform (28/38)

- Example 2.3.18. Determine the Fourier transform of $x(t)=t$
- Setting $y(t)=1$ and using the relation $\mathscr{F}[t y(t)]=\frac{j}{2 \pi} \frac{d}{d f} Y(f)$, we have

$$
\begin{aligned}
\mathscr{F}[t y(t)] & =\mathscr{F}[t] \\
& =\frac{j}{2 \pi} \frac{d Y(f)}{d f} \\
& =\frac{j}{2 \pi} \delta^{\prime}(f)
\end{aligned}
$$

Basic Properties of the Fourier Transform (29/38)

- Integration. The Fourier transform of the integral of a signal can be determined from the relation

$$
\mathscr{F}\left[\int_{-\infty}^{t} x(\tau) d \tau\right]=\frac{X(f)}{j 2 \pi f}+\frac{1}{2} X(0) \delta(f)
$$

- To show this, we start with the result of Problem 2.15 to obtain

$$
\int_{-\infty}^{t} x(\tau) d \tau=x(t) \nless u_{-1}(t)
$$

Now using the convolution theorem and the Fourier transform of $u_{-1}(t)$, we have

$$
\begin{aligned}
\left.\mathscr{F}_{[-\infty}^{t} x(\tau) d \tau\right] & =X(f)\left[\frac{1}{j 2 \pi f}+\frac{1}{2} \delta(f)\right] \\
& =\frac{X(f)}{j 2 \pi f}+\frac{1}{2} X(0) \delta(f)
\end{aligned}
$$

Basic Properties of the Fourier Transform (30/38)

- Example 2.3.19. Determine the Fourier transform of the signal $x(t)$ shown in Fig. 2.42.

Figure 2.42 Signal $x(t)$.

Basic Properties of the Fourier Transform (31/38)

- Example 2.3.19. (Cont'd)
- Note that

$$
x(t)=\int_{-\infty}^{t} \Pi(\tau) d \tau
$$

Using the integration theorem, we obtain

$$
\begin{aligned}
\mathscr{F}[x(t)] & =\frac{\sin c(f)}{j 2 \pi f}+\frac{1}{2} \sin c(0) \delta(f) \\
& =\frac{\sin c(f)}{j 2 \pi f}+\frac{1}{2} \delta(f)
\end{aligned}
$$

Basic Properties of the Fourier Transform (32/38)

- Moments. If $\mathscr{F}[x(t)]=X(f)$, then the nth moment of $x(t)$ can be obtained from the relation

$$
\int_{-\infty}^{\infty} t^{n} x(t) d t=\left.\left(\frac{j}{2 \pi}\right)^{n} \frac{d^{n}}{d f^{n}} X(f)\right|_{f=0}
$$

- This can be shown by using the differentiation in the frequency domain result. We have

$$
\mathscr{F}\left[t^{n} x(t)\right]=\left(\frac{j}{2 \pi}\right)^{n} \frac{d^{n}}{d f^{n}} X(f)
$$

This means that

$$
\int_{-\infty}^{\infty} t^{n} x(t) e^{-j 2 \pi t t} d t=\left(\frac{j}{2 \pi}\right)^{n} \frac{d^{n}}{d f^{n}} X(f)
$$

Letting $f=0$, we obtain the desired result

Basic Properties of the Fourier Transform (33/38)

- For the special case of $n=0$, we obtain this simple relation for finding the area under a signal, i.e.,

$$
\int_{-\infty}^{\infty} x(t) d t=X(0)
$$

Basic Properties of the Fourier Transform (34/38)

- Example 2.3.20. Determine the nth moment of $x(t)=e^{-\alpha t} u_{-1}(t)$, where $\alpha>0$
- First we solve for $X(f)$. We have

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} e^{-\alpha t} u_{-1}(t) e^{-j 2 \pi f t} d t \\
& =\frac{1}{\alpha+j 2 \pi f}
\end{aligned}
$$

By differentiating n times, we obtain

$$
\frac{d^{n}}{d f^{n}} X(f)=\frac{n!(-j 2 \pi)^{n}}{(\alpha+j 2 \pi f)^{n+1}} .
$$

Hence, $\int_{-\infty}^{\infty} t^{n} e^{-\alpha t} u_{-1}(t) d t=\left(\frac{j}{2 \pi}\right)^{n} n!(-j 2 \pi)^{n} \frac{1}{\alpha^{n+1}}=\frac{n!}{\alpha^{n+1}}$

Basic Properties of the Fourier Transform (35/38)

- Example 2.3.21. Determine the Fourier transform of $x(t)=e^{-\alpha|t|}$, where $\alpha>0$.

Figure 2.43 Signal $e^{-\alpha|f|}$ and its
Fourier transform.

Basic Properties of the Fourier Transform (36/38)

- Example 2.3.21.(Cont'd) We have

$$
x(t)=e^{-\alpha t} u_{-1}(t)+e^{\alpha t} u_{-1}(-t)={ }_{x_{1}}(t)+x_{2}(t)
$$

We already see that

$$
\mathscr{F}\left[x_{1}(t)\right]=\mathscr{F}\left[e^{-\alpha t} u_{-1}(t)\right]=\frac{1}{\alpha+j 2 \pi f}
$$

and

$$
\mathscr{F}\left[x_{2}(-t)\right]=\frac{1}{\alpha-j 2 \pi f}
$$

Hence by the linearity property, we have

$$
\begin{aligned}
\mathscr{F}[x(t)] & =\frac{1}{\alpha+j 2 \pi f}+\frac{1}{\alpha-j 2 \pi f} \\
& =\frac{2 \alpha}{\alpha^{2}+4 \pi^{2} f^{2}}
\end{aligned}
$$

Basic Properties of the Fourier Transform (37/38)

TABLE 2.1 TABLE OF FOURIER-TRANSFORM PAIRS

Time Domain	Frequency Domain
$\delta(t)$	1
1	$\delta(f)$
$\delta\left(t-t_{\mathrm{O}}\right)$	$e^{-j 2 \pi f t a}$
$e^{j 2 \pi f_{0} t}$	$\cdots(f)$
$\cos \left(2 \pi f_{0} t\right)$	$\frac{1}{2} \delta\left(f-f_{0}\right)+\frac{1}{2} \delta\left(f+f_{0}\right)$
$\sin \left(2 \pi f_{\mathrm{O}} t\right)$	$-\frac{1}{2 j} \delta\left(f+f_{0}\right)+\frac{1}{2 j} \delta\left(f-f_{0}\right)$
$\Pi(t)$	$\operatorname{sinc}(f)$
$\operatorname{sinc}(t)$	$I(f)$
$\Delta(t)$	- $\operatorname{sinc}^{2}(f)$
$\therefore \operatorname{sinc}^{2}(t)$	$\Lambda(f)$
$e^{-\alpha t} u-1(t), \alpha>0$	$\frac{1}{x+12 \pi f}$
$t e^{-\alpha t} u-1(t), \alpha>0$	$\frac{1}{(a+12-f)^{2}}$
$e^{-\alpha i f!}$	$\frac{2 \alpha x}{\alpha^{2}+(2+f)^{2}}$
$e^{-\pi t^{2}}$	$e^{-\pi t^{2}}$
$\operatorname{sen}(T)$	$\frac{1}{1 \pi r}$
$u-1(t)$	$\frac{1}{2} \delta(f)+\frac{1}{12+f}$
$\delta^{\prime}(t)$	$j 2 \pi f$
$\delta^{(n)}(t)$	$(i 2 \pi f)^{n}$
$\frac{1}{t}$	$-j \pi \sin (f)$
$\sum_{n=+\infty}^{n=-\infty} \delta\left(t-n T_{0}\right)$	$\frac{1}{T_{0}} \sum_{n=+\infty}^{n=-\infty}(f)$

Basic Properties of the Fourier Transform (38/38)

TABLE 2.2 TABLE OF FOURIER-TRANSFORM PROPERTIES

Signal	Fourier Transform
$\alpha x_{1}(t)+\beta x_{2}(t)$	$\alpha X_{1}(f)+\beta X_{2}(f)$
$X(t)$	$x(-f)$
$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{f}{a}\right)$
$x\left(t-t_{0}\right)$	$e^{-j 2 \pi f t_{0}} X(f)$
$e^{j 2 \pi f_{0} t} x(t)$	$X\left(f-f_{0}\right)$
$x(t) \star y(t)$	$X(f) Y(f)$
$x(t) y(t)$	$j 2 \pi f X(f) \star Y(f)$
$\frac{d}{d t} x(t)$	$(j 2 \pi f)^{n} X(f)$
$\frac{d^{n}}{d t^{n}} x(t)$	$\left(\frac{j}{2 \pi}\right) \frac{d}{d f} X(f)$
$t x(t)$	$\left(\frac{j}{2 \pi}\right)^{n} \frac{d^{n}}{d f^{n}} X(f)$
$t^{n} x(t)$	$\frac{X(f)}{j 2 \pi f}+\frac{1}{2} X(0) \delta(f)$
$f_{-\infty}^{t} x(\tau) d \tau$	$X(f)$

Fourier Transform for Periodic Signals (1/3)

- Let $x(t)$ be a periodic signal with the period T_{0}. Let $\left\{x_{n}\right\}$ denote the Fourier series coefficients corresponding to this signal. There exists another way to find $\left\{x_{n}\right\}$ through the Fourier transform of the truncated signal $x_{T_{0}}(t)$ as

$$
x_{T_{0}}(t)=\left\{\begin{array}{cl}
x(t), & -\frac{T_{0}}{2}<t \leq \frac{T_{0}}{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

- Rewrite $x(t)$ in terms of $x_{T_{0}}(t)$

$$
x(t)=x_{T_{0}}(t) \star \sum_{n=-\infty}^{\infty} \delta\left(t-n T_{0}\right)
$$

Taking the Fourier transform on both sides of $x(t)$, we obtain

$$
X(f)=X_{T_{0}}(f)\left[\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \delta\left(f-\frac{n}{T_{0}}\right)\right]
$$

Fourier Transform for Periodic Signals
 (2/3)

- $X(f)$ can be further rewritten as

$$
X(f)=\frac{1}{T_{0}}\left[\sum_{n=-\infty}^{\infty} X_{T_{0}}\left(\frac{n}{T_{0}}\right) \delta\left(f-\frac{n}{T_{0}}\right)\right]
$$

- Consider the Fourier series of $x(t)$. We have

$$
x(t)=\sum_{n=-\infty}^{\infty} x_{n} e^{j 2 \pi \frac{n}{r_{0}} t}
$$

Take Fourier transform on both sides of $x(t)$. We obtain

$$
X(f)=\sum_{n=-\infty}^{\infty} x_{n} \delta\left(f-\frac{n}{T_{0}}\right)
$$

We thus conclude

$$
\begin{equation*}
x_{n}=\frac{1}{T_{0}} X_{T_{0}}\left(\frac{n}{T_{0}}\right) \tag{Eq.2.3.64}
\end{equation*}
$$

Fourier Transform for Periodic Signals (3/3)

- Given the periodic signal $x(t)$, we can find x_{n} by using the following steps:
- First, we determine the truncated signal $x_{T_{0}}(t)$
- Then, we determine the Fourier transform of the truncated signal using Table 2.1 and the Fourier-transform properties
- Finally, we evaluate the Fourier transform of the truncated signal at $f=n / T_{0}$ and scale it by $1 / T_{0}$, as shown in Eq. (2.3.64)

Transmission over LTI Systems (1/7)

- Let $X(f), H(f)$, and $Y(f)$ be the Fourier transforms of the input, system impulse response, and the output, respectively. Thus,

$$
Y(f)=H(f) X(f)
$$

- Example 2.3.23. Let the input to an LTI system be the signal

$$
x(t)=\operatorname{sinc}\left(W_{1} t\right)
$$

and let the impulse response of the system be

$$
h(t)=\operatorname{sinc}\left(W_{2} t\right) .
$$

Determine the output signal.

Transmission over LTI Systems (2/7)

- Example 2.3.23. (Cont'd) First, we transform the signals to the frequency domain. Thus, we obtain
and

$$
X(f)=\frac{1}{W_{1}} \Pi\left(\frac{f}{W_{1}}\right)
$$

$$
H(f)=\frac{1}{W_{2}} \Pi\left(\frac{f}{W_{2}}\right)
$$

Transmission over LTI Systems (3/7)

- Example 2.3.23. (Cont'd) To obtain the output in the frequency domain, we have

$$
\begin{aligned}
Y(f) & =X(f) H(f) \\
& =\frac{1}{W_{1} W_{2}} \Pi\left(\frac{f}{W_{1}}\right) \Pi\left(\frac{f}{W_{2}}\right) \\
& =\left\{\begin{array}{ll}
\frac{1}{W_{1} W_{2}} \Pi\left(\frac{f}{W_{1}}\right), & W_{1} \leq W_{2} \\
\frac{1}{W_{1} W_{2}} & \frac{f}{W_{2}}
\end{array}\right), W_{1}>W_{2}
\end{aligned} ~ . ~ .
$$

From this result, we obtain

$$
y(t)= \begin{cases}\frac{1}{W_{2}} \sin c\left(W_{1} t\right), & W_{1} \leq W_{2} \\ \frac{1}{W_{1}} \sin c\left(W_{2} t\right), & W_{1}>W_{2}\end{cases}
$$

Transmission over LTI Systems (4/7)

- The bandwidth of a filter is the set of positive frequencies that a filter can pass

Figure 2.45 Various filter types.

Transmission over LTI Systems (5/7)

- For nonideal lowpass or bandpass filters, the bandwidth is usually defined as the band of frequencies at which the power-transfer ratio of the filter is half of the maximum power-transfer ratio
- This bandwidth is usually called the $3-\mathrm{dB}$ bandwidth of the filter, because reducing the power by a factor of two is equivalent to decreasing it by 3 dB on the logarithmic scale

Transmission over LTI Systems (6/7)

Figure 2.46 3 dB bandwidth of filters in Example 2.3.24.

Transmission over LTI Systems (7/7)

- Example 2.3.24. The magnitude of the transfer function of a filter is given by

$$
H(f)=\frac{1}{\sqrt{1+\left(\frac{f}{10000}\right)^{2}}}
$$

Determine the filter type and its 3 dB bandwidth.

- This is a lowpass filter. A $3-\mathrm{dB}$ bandwidth is 10 kHz

