Chapter 2 Signals and Linear

Systems (IV)
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Basic Properties of the Fourier
Transform (1/38)

* Linearity. The Fourier-transtorm operation is linear. That is,
if x,(t) and x,(t) are signals with Fourier transtorms X, (f) and
X,(f) respectively, the Fourier transform of @x,(£)+fx,(¢) is
aX,(H+PBX,(f), where & and (3 are two arbitrary (real or

complex) scalars

* Example 2.3.4. Determine the Fourier transtorm of u (z).

The unit-step signal can be rewritten as
I+1sgn(t), t=0
=127 an( |
1 1=0
We have
O 7 +san()]
=20(f)+—+

24




Basic Properties of the Fourier
Transform (2/38)

* Duality. If X(f)=./ [x()] then
()= 7TX0)
and

X(f)=- A TXO)
® 'To show this property, we begin with the inverse Fourier-

transform relation
X(t) = j"‘; X (f)el?™df.
Then, we introduce the change of variable u=-f to obtain
X(t)=[ X(-u)e**du.
Let t=f, we have

@ x(f)= j_‘”w X (—=u)e 1% du




Basic Properties of the Fourier
Transform (3/38)

® Finally, substituting ¢ for u, we get
x(f)= r’ X (~t)e 2™ dt

or

x(y=. 7/ [X(-1)].

* Using the same technique once more, we obtain

x(f)= /TX)]




Basic Properties of the Fourier
Transform (4/38)

* Example 2.3.5. Determine the Fourier transform of sinc(r).

Note that [1(¢) is an even signal and, therefore, that ]'[QF):
[1(-f). We can use the duality theorem to obtain

cﬂsinc(t)]:l_[(f): H(—f)
° Example 2.3.6. Determine the Fourier transform of 1/t.

We already have

S 1
S =
[sgn(z)] i

to have

[ [=sgn(/)=-sgn(f).

By the linearlty theorem, we have

//~[% |=-jTTsgn(f).




Basic Properties of the Fourier
Transform (5/38)

* Shift in Time Domain. A shift of ¢, in the time origin
causes a phase shift of —27T [ft, in the frequency domain. In

other words,
(1] =0 x(0).
To prove this, we have
)] x(t-t,)e .
With a change of variable of u=t-t,, we obtain
I x(t-ty)] = _[ " x(u)e 12egiz Mgt

P JZ;tftOJ' X(U)e 127zfudt

=e ./ x(1)]
-,




Basic Properties of the Fourier
Transform (6/38)

o Example 2.3.7. Determine the Fourier transform of the

Signal shown in Fig. 2.37.
® We have

X(t) = TI(t—2).

By applylng the shift theorem, we obtain

x(t) )

-

x(t)]=e 7 sing(f) = e sinc(f).

Figure 2.37 Signal x(t).
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Basic Properties of the Fourier
Transform (7/38)

o Example 2.3.8. Determine the Fourier transform of the

impulse train
X(t) = Za(t nT,).
® The Fourier-series expansmn of x() can be represented as

X(t) = Z5(t nT,) = Z 27

Takmg the Fourler transform of both sides of the above

equation, we obtain

X(f):% Zé(f —n%
If we replace 1/T, Wit}qzc: X(f) can be written as

X (f)=f, 3 6(f -nf,).
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Basic Properties of the Fourier

Transform (8/38)

° Scaling. For any real a#0, we have

 [x(at)| = X( ).

® To see this, we note that

ST@)l= [ x(at)e > "dt

and make the change in variable u=at. Then,

;T[X(at)] :I%IJ‘OO X(U)e_jZdUIadU

=g X ()

* Note that in the pervious expression, it |a|>1, then x(ar) is a

contracted form of x(¢), whereas it |a|<I, x(ar) is an

expanded version of x(t)
(-,
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Basic Properties of the Fourier
Transform (9/38)

® If we expand a signal in the time domain, its frequency-
domain representation (Fourier transform) contracts; it we
contract a signal in the time domain, its frequency domain

representation expands

® Since contracting a signal in the time domain makes the
changes in the signal more abrupt, thus increasing its

frequency content




Basic Properties of the Fourier
Transform (10/38)

o Example 2.3.9. Determine the Fourier transform of the

3 0<t<4
X(t) = .
0 otherwise

Signal

® x(t) can be represented as X(t) = 31—1(%) . Using the linearity,

time shift, and scaling properties, we have
13m(s2) 173 ()]
=12e """ sinc(4f)




Basic Properties of the Fourier
Transform (11/38)

* Convolution. If the signals x(t) and y(r) both possess

Fourier transforms, then

oAy @1= O]+ - TOIEXG * Y

® For a proof, we have

@) k(D))=

" [ x@y-rdr gt
" x@) [ yt-o)e Ot e,

Now with the change of variable u=t-T, we have

r y(t—z)e 2 gt = j"" y(ue #du=Y(f)

Therefore,

ey kyOl= [ (@)Y (F)E > dz=X(f)-Y(f)
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Basic Properties of the Fourier
Transform (12/38)

® Finding the response of an LTI system to a given input is
much easier in the frequency domain than it is the time
domain. This theorem is the basis of the frequency—domain

analysis of LTI systems

* Example 2.3.10. Determine the Fourier transform of the
signal A(t)

e It is enough to note that A(t)=II(t) Y II(t) and use the

convolution theorem.

We obtain
A=) » -] =sinc(f)
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Basic Properties of the Fourier

Transform (13/38)

¢ Modulation. The Fourier transform of X(t)eﬂ”f(’t is X(f-f,)

® To show this relation, we have

S x(r)e>™o] _ J‘OO X(t)e ot g-i2At gt

= [ x(tye 2t
= X(f —1,)

° Example 2.3.12. Determine the Fourier transform of
X(t):ejmfot.

7[ ej27T fot] — C”/ﬁ[ 1 ej27Tfot]
=o(f - 1:o)

Note that since x(¢) is not real, its Fourier transform does not

@ have the Hermitian symmetry

/




Basic Properties of the Fourier
Transform (14/38)

° Example 2.3.13. Determine the Fourier transform of the
signal cos(27tf,t)

We have
eosQmfy)]= /22t 4 L i2
=20(f-f)+50(f +f,)
° Example 2.3.14. Determine the Fourier transform of the
signal x(r)cos(27Tf, )
We have
S TxO)cosTfn)]=- /T4 x(t)e! ™ + L x(t)e ¥ ]

=%X(f — fo)+%X(f + f,)




Basic Properties of the Fourier
Transform (15/38)

x (1)
1

0.8

x(t) cos 2w fyt

osk T SX(f=f) + 21X (14 )

R T LLL rf‘;o\ A—H, N

-1 L
-5 0 5

Figure 2.38 Effect of modulation in both the time and frequency domain.




Basic Properties of the Fourier
Transform (16/38)

o Example 2.3.15. Determine the Fourier transform of the

signal

0 otherwise

X(t) = {COS(ﬂt) 1t|<3

1A

Ll ry
-05-03-01001 03 05 ' Figure 239 Signal (1)




Basic Properties of the Fourier
Transform (17/38)

* Example 2.3.15. (Contd)
Note that x(t) can be expressed as
x(t)=I1(t)cos(Ttt).
Therefore,

-/ M (t)cos(mt)]=Lsinc(f —1) +isinc(f +1)




Basic Properties of the Fourier
Transform (18/38)

e Parseval’s Relation. If the Fourier transforms of the signals

x(t) and y(t) are denoted by X(f) and Y(f) respectively, then
[ xy ®dt=[" X(F)Y"(f)df.

* Rayleigh’s theorem. If we substitute y(t)=x(z) into

Parseval’s relation, we obtain

[CIx@ P dt=[" | X(f)[ df.




Basic Properties of the Fourier
Transform (19/38)

° Example 2.3.16. Use Parseval’s relation or Rayleigh’s

theorem, determine the values of the integrals

[~ sinc’ (t)dt

and

[ sinc’(t)dt.

* We have . / [smcz(t)] =A(f). Using Rayleigh’s theorem with
x(t)=sinc’(t), we get

f sinc” (t)dt = :OO |sinc(t)|* dt
= [ AP df
= [ (f +D*df +] (- +1)’f

(=
N\ =3




Basic Properties of the Fourier
Transform (20/38)

* Example 2.3.16. (Cont'd)
* Note that . / [sinc(t)]= II(f); therefore, by Parseval’s theorem,

we have

[ sinc*tydt=| sinc?(t)sinc(t)dt

iH(f)A(f)df

— 11l 11
—1><2+2><2

_3
4




Basic Properties of the Fourier
Transform (21/38)

* Example 2.3.16. (Cont’d)

Figure 240 Product of [T and A,




Basic Properties of the Fourier
Transform (22/38)

® Autocorrelation. The (time) autocorrelation function of

the signal x(t) is denoted by R (T) and is defined by
Ry (r) = x(®)X"(t—7)dt.

The autocorrelation theorem states that
JRDI=|X() |7
® We note that
Ry (r) = x(®)X'(t—z)dt
= j_°° X(D)X (—(z —t))dt
=x(T) K x"(-T)
o7 *<—T)] _ jjooo X*(_z_)e—j27zfz'dz_ _ IOO X*(u)eJZﬂfudu

= ([ x(u)e*"du)”= X"(f)

and




Basic Properties of the Fourier
Transform (23/38)

e Differentiation. The Fourier transform of the derivative of

a signal can be obtained from the relation

—d
] Ex(t)]:jzﬂﬂ(gf)

® To see this, we have

d d e :
—x(t)=—| X(f)e!*™df
X dtj_w (f)

:f j2AEX (f)el?™df .

We then conclude that

A2mfX(f)] = % X(t)

or

O 12




Basic Properties of the Fourier
Transform (24/38)

* With repeated application of the ditferentiation theorem, we

obtain the relation
n

S XOI=G21f X




Basic Properties of the Fourier
Transform (25/38)

° Example 2.3.17. Determine the Fourier transform of the
signal shown in Fig. 2.41.

A

Figure 241 Signal x(1).




Basic Properties of the Fourier
Transform (26/38)

* Example 2.3.17. (Contd)
* Obviously, x(t) = %A(’[). Theretore, by applying the

differentiation theorem, we have
ETT — O d
ST T A]
=i2Tf./ [A(t)]
=i27tf sinc?(f)




(-

Basic Properties of the Fourier
Transform (27/38)

e Differentiation in Frequency Domain. We begin with

/[tX(t)]_ 5@ X(f).

Repeated use of this theorem ylelds

s 2 ) o X,
® To show this, we have

X(F)={" x(t)e*"dt

d);if) :.'_OZO X(’[)%e_p”ﬂdt
= (-j2at)x(t)e "*"dt
] dX(f)
27 df _
-> J/}T[tx(t)::ii)((f)

27 df

= [ x(t)e >t




Basic Properties of the Fourier
Transform (28/38)

* Example 2.3.18. Determine the Fourier transform of x(t)=t
* Setting y(¢r)=1 and using the relation . / [ty(¢)]= -- > df (),

we have

A y@1= /14
_ ) dv(f)
_27_2 df

- L5(f)

27T
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Basic Properties of the Fourier
Transform (29/38)

o Integration. The Fourier transform of the integral of a

Signal can be determined from the relation

A x(r)dr]—T(;;f) +1x0)8(f)

® To show this, we start with the result of Problem 2.15 to

obtain

[ x(@)dz=x() k().

Now using the convolution theorem and the Fourier

transtorm of u_,(t), we have
[ x(@)de] = X(f){ !

_X({) 1
= o X(0)o(1)

1
+25(f)}




Basic Properties of the Fourier
Transform (30/38)

° Example 2.3.19. Determine the Fourier transform of the
signal x(t) shown in Fig. 2.42.

A

Figure 242 Signal x(z).




Basic Properties of the Fourier
Transform (31/38)

* Example 2.3.19. (Contd)
® Note that
x®) =] T(r)dr.
Using the integration theorem, we obtain

X (t)]—s'”c(” ;smc(ow(f)

smc(f) 1
J2nf 2

So(f)
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Basic Properties of the Fourier
Transform (32/38)

°* Moments. If . / [x(t)]=X(f), then the nth moment of x(¢) can

be obtained from the relation

© n . J |
[t x(t)dt—(zﬂj X (Dl

® This can be shown by using the differentiation in the

frequency domain result. We have

dn
t"x(t
=[] Soxen
This means that

. . i )" d"
t"x(t)e 12t = | X (f
k(] xc

Letting =0, we obtain the desired result




Basic Properties of the Fourier
Transform (33/38)

® For the special case of n=0, we obtain this simple relation for

finding the area under a signal, i.e.,

| ~ x(t)dt=X(0)




Basic Properties of the Fourier
Transform (34/38)

° Example 2.3.20. Determine the nth moment of
x(t)=e*u_,(t), where >0
* First we solve for X(f). We have

X(f)= f’ e u_, (t)e 12"dt
B 1
o+ |24
By differentiating n times, we obtain
d X (f) = n!(—_127z) 5
df " (a+ j2A)™

1

Hence, r t”e‘“tu_l(t)dt =(2i) nl(—j2r)" =
—0 T 04 a




Basic Properties of the Fourier
Transform (35/38)

o Example 2.3.21. Determine the Fourier transform of

x(t)=e %t where a>0.

> Figure 243  Signal ¢ “" and its
Founer transform.




Basic Properties of the Fourier
Transform (36/38)

° Example 2.3.21.(C0nt’d) We have
x(t)=e Mu () Fe™u (-t)=x, (t) Tx,(2)
We already see that

@)= e, (0] =—

o+ |24

and
1

o — | 2xf
Hence by the linearity property, we have

A x(0)]=

XOV= o T e o
B 20
C a?+Antf?
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Basic Properties of the Fourier

Transform (37/38)

TABLE 2.1 TABLE OF FOURIER-TRANSFORM PAIRS

Time Domain

Freguency Domain

5 L.
1 SCS
5z — zé) | e—i27 s
esrmsor 5CF — fo)
cos (277 for) %a(f - fo) + 28CF + So)
| sin 2 for) %_,-5()’ + o) + %a'(f — o
B e _
sine (0 | 'H(_f) |
A . sine® ()
sinc(r) CAGH
e " 1 :litr).j_c'x = O -u_,lz_,',

re " (1), cx = 0O

e} —
[=4 2o f =
e e TIT
1
sgndr) =
g (r) i«h(_)‘) + T_’I-rr
a’ce) J2mf
(S > (r) (‘]‘2--7-_:‘]“:)"
1 — Jrsen( f)

1 T = ~ - "-
To 2 mmm—oc O (f ‘ﬁ,)

> T a(r—nly)
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Basic Properties of the Fourier
Transform (38/38)

TABLE 2.2 TABLE OF FOURIER-TRANSFORM PROPERTIES

Signal Fourier Transform
i (1) + Bxa(t) aX\(f) + BX2(f)
X (1) x(—f)
ax (4
x(t — o) e 120X (f)
eI 27 foi x (1) X(f = fo)
x(£) * y (1) X(HY(f)

(0 y (1) X(f)*xY(f)

4 x(1) J2mFX(f)

L5 x (1) (G2 "X (f)
tx (1) (ﬁ)g“}X(f)
%) (&) #=x

Sox@de | L0 4+ IXO)3()
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Fourier Transform for Periodic Signals

(1/3)

® Let x(t) be a periodic signal with the period T|,. Let {x,}
denote the Fourier series coefficients corresponding to this
signal. There exists another way to find {x_} through the

Fourier transform of the truncated signal x; (t) as

X, (1) = {X“) F<t<3

0, otherW|se

* Rewrite x(¢) in terms of X; (t)
X(t) =%, (1) * 25(t —nT,).

Taking the Fourier transtorm on both sides of x(r), we obtain

X(f):XTO(f){Ti ié(f—%}

0 N=—0

/




Fourier Transform for Periodic Signals

(2/3)

® X(f) can be further rewritten as

X(f):l[iXTO(T’l)é(f - }

TO N=-o0
® Consider the Fourier series of x(t). We have

= j 27t
X(t) = aneJ o

Take Fourier transform on both sides of x(¢). We obtain
X(f)= D x.6(f =)

We thus conclude
n
X, =—Xq, (Toj (Eq. 2.3.64)




Fourier Transform for Periodic Signals

(3/3)

® Given the periodic signal x(t), we can find x, by using the
following steps:
® First, we determine the truncated signal X (t)

® Then, we determine the Fourier transform of the truncated

signal using Table 2.1 and the Fourier-transform properties

® Finally, we evaluate the Fourier transform of the truncated

signal at f=n/ T, and scale it by 1/ T, as shown in Eq. (2.3.64)




Transmission over LTI Systems (1/7)

* Let X(f), H(f), and Y(f) be the Fourier transforms of the input,

system impulse response, and the output, respectively. Thus,

Y(H=H{HX()
° Example 2.3.23. Let the input to an LTI system be the

signal
x(t)=sinc(W,t)

and let the impulse response of the system be
h(t)=sinc(W,t).

Determine the output signal.




Transmission over LTI Systems (2/7)

* Example 2.3.23. (Cont’d) First, we transform the signals

to the frequency domain. Thus, we obtain

X(F)= TG

and

1 f
(=316
2 2

I

ol =

W f  Figure 244 Lowpass signal and lowpass
: filter.

™~
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Transmission over LTI Systems (3/7)
* Example 2.3.23. (Cont’d) To obtain the output in the

frequency domain, we have

Y@_X@H@

WW W W)

_ vvlvvz H(Wl) W, <W,
H(WZ) W, >W,

W1W2

From this result, we obtain

=sinc(Wit), W, <W,
y(O) =47
wSIinc(W,t), W, >W,




Transmission over LTI Systems (4/7)

® The bandwidth of a filter is the set of positive frequencies
that a filter can pass

H()
HDIA g
1
—W 1% f
H A
O
N 1 N
—W W £

- W2 - W1 WJ_ W2

~

Figure 2.45 Various filter types.

™~
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Transmission over LTI Systems (5/7)

* For nonideal lowpass or bandpass filters, the bandwidth is
usually defined as the band of frequencies at which the
power-transfer ratio of the filter is half of the maximum

power—transfer ratio

® This bandwidth is usually called the 3-dB bandwidth of the

filter, because reducing the power by a factor of two is

equivalent to decreasing it by 3 dB on the logarithmic scale
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Transmission over LTI Systems (6/7)

\H(f)] 4

Y

o e

3 dB bandwidth

@ Figure 2.46 3 dB bandwidth of filters in Example 2.3.24.




Transmission over LTI Systems (7/7)

° Example 2.3.24. The magnitude of the transfer function of
a filter is given by

1
H(f)= .
VL (ore0)

Determine the filter type and its 3 dB bandwidth.
* This is a lowpass filter. A 3-dB bandwidth is10 kHz

| i
I |
1 1
[ | | L] ] f
S 0 2 4 (; Figure 247 3 dB bandwidth of
k X106 filer in Example 234,




