Chapter 2 Signals and Linear Systems (IV)

Basic Properties of the Fourier Transform (1/38)

- Linearity. The Fourier-transform operation is linear. That is, if $x_1(t)$ and $x_2(t)$ are signals with Fourier transforms $X_1(f)$ and $X_2(f)$ respectively, the Fourier transform of $\alpha x_1(t) + \beta x_2(t)$ is $\alpha X_1(f) + \beta X_2(f)$, where α and β are two arbitrary (real or complex) scalars
- **Example 2.3.4.** Determine the Fourier transform of $u_{-1}(t)$. The unit-step signal can be rewritten as

$$u_{-1}(t) = \begin{cases} \frac{1}{2} + \frac{1}{2} \operatorname{sgn}(t), & t \neq 0\\ 1, & t = 0 \end{cases}$$

We have

$$\mathcal{F}[u_{-1}(t)] = \mathcal{F}\left[\frac{1}{2} + \frac{1}{2}\operatorname{sgn}(t)\right]$$
$$= \frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$$

Basic Properties of the Fourier Transform (2/38)

• **Duality.** If $X(f) = \mathcal{F}[x(t)]$ then

$$x(f) = \mathcal{F}[X(-t)]$$

and

$$x(-f) = \mathscr{F}[X(t)]$$

• To show this property, we begin with the inverse Fouriertransform relation

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df.$$

Then, we introduce the change of variable u=-f to obtain $x(t) = \int_{-\infty}^{\infty} X(-u)e^{-j2\pi u t} du.$

Let
$$t=f$$
, we have
 $x(f) = \int_{-\infty}^{\infty} X(-u)e^{-j2\pi u f} du$

Basic Properties of the Fourier Transform (3/38)

• Finally, substituting *t* for *u*, we get $x(f) = \int_{-\infty}^{\infty} X(-t)e^{-j2\pi t f} dt$

or

$$x(f) = \mathscr{F}[X(-t)].$$

• Using the same technique once more, we obtain $x(-f) = \mathscr{F}[X(t)]$

Basic Properties of the Fourier Transform (4/38)

- Example 2.3.5. Determine the Fourier transform of sinc(t). Note that Π(t) is an even signal and, therefore, that Π(f)= Π(-f). We can use the duality theorem to obtain
 F[sinc(t)]=Π(f)=Π(-f)
- Example 2.3.6. Determine the Fourier transform of 1/t.
 We already have

$$\mathcal{F}[\operatorname{sgn}(t)] = \frac{1}{j\pi f}$$

to have

$$\mathcal{F}[\frac{1}{j\pi t}] = \operatorname{sgn}(-f) = -\operatorname{sgn}(f).$$

By the linearity theorem, we have

$$\mathscr{F}[\frac{1}{t}] = -j\pi \operatorname{sgn}(f).$$

Basic Properties of the Fourier Transform (5/38)

• Shift in Time Domain. A shift of t_0 in the time origin causes a phase shift of $-2\pi f t_0$ in the frequency domain. In other words,

$$\mathcal{F}[x(t-t_0)] = e^{-j2\pi ft_0} \mathcal{F}[x(t)].$$

To prove this, we have

$$\mathscr{F}[x(t-t_0)] = \int_{-\infty}^{\infty} x(t-t_0) e^{-j2\pi ft} dt.$$

With a change of variable of $u=t-t_0$, we obtain

$$\mathscr{F}[x(t-t_0)] = \int_{-\infty}^{\infty} x(u) e^{-j2\pi f t_0} e^{-j2\pi f u} dt$$

$$=e^{-j2\pi ft_0}\int_{-\infty}^{\infty}x(u)e^{-j2\pi fu}dt$$

$$=e^{-j2\pi ft_0}\mathcal{F}[x(t)]$$

Basic Properties of the Fourier Transform (6/38)

• **Example 2.3.7.** Determine the Fourier transform of the signal shown in Fig. 2.37.

• We have

$$x(t) = \prod(t - \frac{3}{2}).$$

Basic Properties of the Fourier Transform (7/38)

• **Example 2.3.8.** Determine the Fourier transform of the impulse train

$$x(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_0).$$

• The Fourier-series expansion of x(t) can be represented as $x(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_0) = \frac{1}{T_0} \sum_{\substack{n=-\infty \\ r_0}}^{\infty} e^{j2\pi \frac{n}{T_0}t}.$ This expansion of $x(t) = \frac{1}{T_0} \sum_{\substack{n=-\infty \\ r_0}}^{\infty} e^{j2\pi \frac{n}{T_0}t}.$

Taking the Fourier transform of both sides of the above equation, we obtain

$$X(f) = \frac{1}{T_0} \sum_{n = -\infty}^{\infty} \delta(f - n \frac{1}{T_0}).$$

If we replace $1/T_0$ with $f_0^{n-\infty}$, X(f) can be written as

$$X(f) = f_0 \sum_{n=-\infty}^{\infty} \delta(f - nf_0).$$

Basic Properties of the Fourier Transform (8/38)

• **Scaling.** For any real $a \neq 0$, we have

$$\mathcal{F}[x(at)] = \frac{1}{|a|} X(\frac{f}{a}).$$

• To see this, we note that

$$\mathcal{F}[x(at)] = \int_{-\infty}^{\infty} x(at)e^{-j2\pi ft}dt$$

and make the change in variable $u = at$. Then,
$$\mathcal{F}[x(at)] = \frac{1}{|a|} \int_{-\infty}^{\infty} x(u)e^{-j2\pi fu/a}du$$
$$= \frac{1}{|a|} X(\frac{f}{a})$$

Note that in the pervious expression, if | *a* | >1, then *x*(*at*) is a contracted form of *x*(*t*), whereas if | *a* | <1, *x*(*at*) is an expanded version of *x*(*t*)

Basic Properties of the Fourier Transform (9/38)

- If we expand a signal in the time domain, its frequencydomain representation (Fourier transform) contracts; if we contract a signal in the time domain, its frequency domain representation expands
- Since contracting a signal in the time domain makes the changes in the signal more abrupt, thus increasing its frequency content

Basic Properties of the Fourier Transform (10/38)

- Example 2.3.9. Determine the Fourier transform of the signal $x(t) = \begin{cases} 3 & 0 \le t \le 4 \\ 0 & otherwise. \end{cases}$
- x(t) can be represented as $x(t) = 3\Pi(\frac{t-2}{4})$. Using the linearity, time shift, and scaling properties, we have $\mathscr{T}[3\Pi(\frac{t-2}{4})] = 3e^{-4j\pi f} \mathscr{T}[\Pi(\frac{t}{4})]$ $= 12e^{-j4\pi f} \sin c(4f)$

Basic Properties of the Fourier Transform (11/38)

• **Convolution.** If the signals *x*(*t*) and *y*(*t*) both possess Fourier transforms, then

$$\mathscr{F}[x(t) \bigstar y(t)] = \mathscr{F}[x(t)] \bullet \mathscr{F}[y(t)] = X(f) \bullet Y(f)$$

• For a proof, we have $\mathcal{F}[x(t) \bigstar y(t)] = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d\tau \right] e^{-j2\pi f t} dt$ $= \int_{-\infty}^{\infty} x(\tau) \left[\int_{-\infty}^{\infty} y(t-\tau) e^{-j2\pi f (t-\tau)} dt \right] e^{-j2\pi f \tau} d\tau.$

Now with the change of variable
$$u=t-\tau$$
, we have

$$\int_{-\infty}^{\infty} y(t-\tau)e^{-j2\pi f(t-\tau)}dt = \int_{-\infty}^{\infty} y(u)e^{-j2\pi f u}du = Y(f)$$

Therefore,

$$\mathscr{F}[x(t) \bigstar y(t)] = \int_{-\infty}^{\infty} x(\tau) [Y(f)] e^{-j2\pi f\tau} d\tau = X(f) \cdot Y(f)$$

Basic Properties of the Fourier Transform (12/38)

- Finding the response of an LTI system to a given input is much easier in the frequency domain than it is the time domain. This theorem is the basis of the frequency-domain analysis of LTI systems
- **Example 2.3.10.** Determine the Fourier transform of the signal $\Lambda(t)$
- It is enough to note that $\Lambda(t) = \Pi(t) \bigstar \Pi(t)$ and use the convolution theorem.

We obtain

$$\mathscr{F}[\Lambda(t)] = \mathscr{F}[\Pi(t)] \bullet \mathscr{F}[\Pi(t)] = \operatorname{sinc}^2(f)$$

Basic Properties of the Fourier Transform (13/38)

- Modulation. The Fourier transform of $x(t)e^{j2\pi f_0 t}$ is $X(f-f_0)$
- To show this relation, we have

$$\mathcal{F}[x(t)e^{j2\pi f_0 t}] = \int_{-\infty}^{\infty} x(t)e^{j2\pi f_0 t}e^{-j2\pi f t}dt$$
$$= \int_{-\infty}^{\infty} x(t)e^{-j2\pi (f-f_0)t}dt$$
$$= X(f-f_0)$$

• Example 2.3.12. Determine the Fourier transform of $x(t) = e^{j2\pi f_0 t}$.

$$\mathcal{F}[e^{j2\pi f_0 t}] = \mathcal{F}[1e^{j2\pi f_0 t}]$$
$$= \delta(f - f_0)$$

Note that since x(t) is not real, its Fourier transform does not have the Hermitian symmetry

Basic Properties of the Fourier Transform (14/38)

Example 2.3.13. Determine the Fourier transform of the signal cos(2πf₀t)

We have

$$\mathcal{F}[\cos(2\pi f_0 t)] = \mathcal{F}[\frac{1}{2}e^{j2\pi f_0 t} + \frac{1}{2}e^{-j2\pi f_0 t}]$$
$$= \frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)$$

• **Example 2.3.14.** Determine the Fourier transform of the signal $x(t)\cos(2\pi f_0 t)$

We have

$$\mathcal{F}[x(t)\cos(2\pi f_0 t)] = \mathcal{F}[\frac{1}{2}x(t)e^{j2\pi f_0 t} + \frac{1}{2}x(t)e^{-j2\pi f_0 t}]$$
$$= \frac{1}{2}X(f - f_0) + \frac{1}{2}X(f + f_0)$$

Basic Properties of the Fourier Transform (15/38)

Basic Properties of the Fourier Transform (16/38)

• Example 2.3.15. Determine the Fourier transform of the signal

$$x(t) = \begin{cases} \cos(\pi t) & |t| \le \frac{1}{2} \\ 0 & otherwise \end{cases}$$

Basic Properties of the Fourier Transform (17/38)

• Example 2.3.15. (Cont'd)

Note that x(t) can be expressed as

 $x(t) \equiv \prod(t) \cos(\pi t).$

Therefore,

 $\mathcal{F}[\Pi(t)\cos(\pi t)] = \frac{1}{2}\sin c(f - \frac{1}{2}) + \frac{1}{2}\sin c(f + \frac{1}{2})$

Basic Properties of the Fourier Transform (18/38)

• **Parseval's Relation.** If the Fourier transforms of the signals *x*(*t*) and *y*(*t*) are denoted by *X*(*f*) and *Y*(*f*) respectively, then

$$\int_{-\infty}^{\infty} x(t) y^*(t) dt = \int_{-\infty}^{\infty} X(f) Y^*(f) df.$$

• **Rayleigh's theorem.** If we substitute y(t)=x(t) into Parseval's relation, we obtain

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df.$$

Basic Properties of the Fourier Transform (19/38)

• **Example 2.3.16.** Use Parseval's relation or Rayleigh's theorem, determine the values of the integrals

$$\int_{-\infty}^{\infty} \sin c^4(t) dt$$

and

$$\int_{-\infty}^{\infty}\sin c^3(t)dt.$$

• We have $\mathscr{F}[\operatorname{sinc}^2(t)] = \Lambda(f)$. Using Rayleigh's theorem with $x(t) = \operatorname{sinc}^2(t)$, we get

$$\int_{-\infty}^{\infty} \sin c^{4}(t) dt = \int_{-\infty}^{\infty} |\sin c(t)|^{4} dt$$
$$= \int_{-\infty}^{\infty} |\Lambda(f)|^{2} df$$
$$= \int_{-1}^{0} (f+1)^{2} df + \int_{0}^{1} (-f+1)^{2} df$$
$$= \frac{2}{3}$$

Basic Properties of the Fourier Transform (20/38)

- Example 2.3.16. (Cont'd)
- Note that *F*[sinc(*t*)] = Π(*f*); therefore, by Parseval's theorem, we have

$$\int_{-\infty}^{\infty} \sin c^3(t) dt = \int_{-\infty}^{\infty} \sin c^2(t) \sin c(t) dt$$
$$= \int_{-\infty}^{\infty} \Pi(f) \Lambda(f) df$$
$$= 1 \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2}$$
$$= \frac{3}{4}$$

Basic Properties of the Fourier Transform (21/38)

• Example 2.3.16. (Cont'd)

Figure 2.40 Product of Π and Λ .

Basic Properties of the Fourier Transform (22/38)

Autocorrelation. The (time) autocorrelation function of the signal *x*(*t*) is denoted by *R_x*(*τ*) and is defined by

$$R_X(\tau) = \int_{-\infty}^{\infty} x(t) x^*(t-\tau) dt.$$

The autocorrelation theorem states that

$$\mathscr{F}[R_{x}(\tau)] = |X(f)|^{2}$$

• We note that

$$R_{X}(\tau) = \int_{-\infty}^{\infty} x(t)x^{*}(t-\tau)dt$$

$$= \int_{-\infty}^{\infty} x(t)x^{*}(-(\tau-t))dt$$

$$= x(\tau) \bigstar x^{*}(-\tau)$$

and

$$\mathscr{F}[x^{*}(-\tau)] = \int_{-\infty}^{\infty} x^{*}(-\tau)e^{-j2\pi f\tau}d\tau = \int_{-\infty}^{\infty} x^{*}(u)e^{j2\pi fu}du$$

$$= (\int_{-\infty}^{\infty} x(u)e^{-j2\pi fu}du)^{*} = X^{*}(f)$$

Basic Properties of the Fourier Transform (23/38)

• **Differentiation.** The Fourier transform of the derivative of a signal can be obtained from the relation

$$\mathcal{F}\left[\frac{d}{dt}x(t)\right] = j2\pi f X(f)$$

• To see this, we have

$$\frac{d}{dt}x(t) = \frac{d}{dt}\int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df$$

$$=\int_{-\infty}^{\infty}j2\pi f X(f)e^{j2\pi f t}df.$$

We then conclude that

$$\mathcal{F}^{-1}[j2\pi f X(f)] = \frac{d}{dt}x(t)$$

or

$$\mathcal{F}\left[\frac{d}{dt}x(t)\right] = j2\pi f X(f)$$

Basic Properties of the Fourier Transform (24/38)

• With repeated application of the differentiation theorem, we obtain the relation

$$\mathcal{F}[\frac{d^n}{dt^n}x(t)] = (j2\pi f)^n X(f)$$

Basic Properties of the Fourier Transform (25/38)

• **Example 2.3.17.** Determine the Fourier transform of the signal shown in Fig. 2.41.

Basic Properties of the Fourier Transform (26/38)

- Example 2.3.17. (Cont'd)
- Obviously, $x(t) = \frac{d}{dt} \Lambda(t)$. Therefore, by applying the differentiation theorem, we have

$$\mathcal{F}[x(t)] = \mathcal{F}\left[\frac{d}{dt}\Lambda(t)\right]$$
$$= j2\pi f \mathcal{F}[\Lambda(t)]$$
$$= j2\pi f \operatorname{sinc}^{2}(f)$$

Basic Properties of the Fourier Transform (27/38)

• Differentiation in Frequency Domain. We begin with

$$\mathscr{F}[tx(t)] = \frac{j}{2\pi} \frac{d}{df} X(f).$$

Repeated use of this theorem yields

$$\mathscr{F}[t^n x(t)] = \left(\frac{j}{2\pi}\right)^n \frac{d^n}{df^n} X(f).$$

• To show this, we have

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$
$$\frac{dX(f)}{df} = \int_{-\infty}^{\infty} x(t)\frac{d}{df}e^{-j2\pi ft}dt$$
$$= \int_{-\infty}^{\infty} (-j2\pi t)x(t)e^{-j2\pi ft}dt$$
$$\frac{j}{2\pi}\frac{dX(f)}{df} = \int_{-\infty}^{\infty} tx(t)e^{-j2\pi ft}dt$$
$$\Rightarrow \mathscr{F}[tx(t)] = \frac{j}{2\pi}\frac{d}{df}X(f)$$

Basic Properties of the Fourier Transform (28/38)

- **Example 2.3.18.** Determine the Fourier transform of x(t)=t
- Setting y(t)=1 and using the relation $\mathscr{F}[ty(t)]=\frac{j}{2\pi}\frac{d}{df}Y(f)$, we have

$$\mathcal{F}[ty(t)] = \mathcal{F}[t]$$
$$= \frac{j}{2\pi} \frac{dY(f)}{df}$$
$$= \frac{j}{2\pi} \delta'(f)$$

Basic Properties of the Fourier Transform (29/38)

• Integration. The Fourier transform of the integral of a signal can be determined from the relation

$$\mathscr{F}\left[\int_{-\infty}^{t} x(\tau)d\tau\right] = \frac{X(f)}{j2\pi f} + \frac{1}{2}X(0)\delta(f)$$

• To show this, we start with the result of Problem 2.15 to obtain

$$\int_{-\infty}^{t} x(\tau) d\tau = x(t) \bigstar u_{-1}(t).$$

Now using the convolution theorem and the Fourier transform of $u_{-1}(t)$, we have

$$\mathcal{F}\left[\int_{-\infty}^{t} x(\tau) d\tau\right] = X(f) \left[\frac{1}{j2\pi f} + \frac{1}{2}\delta(f)\right]$$
$$= \frac{X(f)}{j2\pi f} + \frac{1}{2}X(0)\delta(f)$$

Basic Properties of the Fourier Transform (30/38)

• **Example 2.3.19.** Determine the Fourier transform of the signal *x*(*t*) shown in Fig. 2.42.

Basic Properties of the Fourier Transform (31/38)

- Example 2.3.19. (Cont'd)
- Note that

$$x(t) = \int_{-\infty}^{t} \Pi(\tau) d\tau.$$

Using the integration theorem, we obtain $\mathcal{F}[x(t)] = \frac{\sin c(f)}{j2\pi f} + \frac{1}{2}\sin c(0)\delta(f)$ $= \frac{\sin c(f)}{i2\pi f} + \frac{1}{2}\delta(f)$

Basic Properties of the Fourier Transform (32/38)

• **Moments.** If $\mathscr{F}[x(t)] = X(f)$, then the *n*th moment of x(t) can be obtained from the relation

$$\int_{-\infty}^{\infty} t^n x(t) dt = \left(\frac{j}{2\pi}\right)^n \frac{d^n}{df^n} X(f)|_{f=0}$$

• This can be shown by using the differentiation in the frequency domain result. We have $\mathcal{F}[t^n x(t)] = \left(\frac{j}{2\pi}\right)^n \frac{d^n}{dt^n} X(f)$

This means that

$$\int_{-\infty}^{\infty} t^n x(t) e^{-j2\pi ft} dt = \left(\frac{j}{2\pi}\right)^n \frac{d^n}{df^n} X(f)$$

Letting f=0, we obtain the desired result

Basic Properties of the Fourier Transform (33/38)

• For the special case of *n*=0, we obtain this simple relation for finding the area under a signal, i.e.,

$$\int_{-\infty}^{\infty} x(t) dt = X(0)$$

Basic Properties of the Fourier Transform (34/38)

• Example 2.3.20. Determine the *n*th moment of

 $x(t) \equiv e^{-\alpha t} u_{-1}(t)$, where $\alpha > 0$

• First we solve for *X*(*f*). We have

$$X(f) = \int_{-\infty}^{\infty} e^{-\alpha t} u_{-1}(t) e^{-j2\pi f t} dt$$
$$= \frac{1}{\alpha + j2\pi f}$$

By differentiating *n* times, we obtain

$$\frac{d^n}{df^n}X(f) = \frac{n!(-j2\pi)^n}{(\alpha + j2\pi f)^{n+1}}.$$

Hence,
$$\int_{-\infty}^{\infty} t^n e^{-\alpha t} u_{-1}(t) dt = \left(\frac{j}{2\pi}\right)^n n! (-j2\pi)^n \frac{1}{\alpha^{n+1}} = \frac{n!}{\alpha^{n+1}}$$

Basic Properties of the Fourier Transform (35/38)

• Example 2.3.21. Determine the Fourier transform of

 $x(t) \equiv e^{-\alpha |t|}$, where $\alpha > 0$.

Basic Properties of the Fourier Transform (36/38)

• Example 2.3.21.(Cont'd) We have

 $x(t) = e^{-\alpha t} u_{-1}(t) + e^{\alpha t} u_{-1}(-t) = x_1(t) + x_2(t)$

We already see that

$$\mathscr{F}[x_1(t)] = \mathscr{F}[e^{-\alpha t}u_{-1}(t)] = \frac{1}{\alpha + j2\pi f}$$

and

$$\mathcal{F}[x_2(-t)] = \frac{1}{\alpha - j2\pi f}$$

Hence by the linearity property, we have
$$\mathcal{F}[x(t)] = \frac{1}{\alpha + j2\pi f} + \frac{1}{\alpha - j2\pi f}$$
$$= \frac{2\alpha}{\alpha^2 + 4\pi^2 f^2}$$

Basic Properties of the Fourier Transform (37/38)

TABLE 2.1 TABLE OF FOURIER-TRANSFORM PAIRS

Time Domain	Frequency Domain
$\delta(t)$	1
1	$\delta(f)$
$\delta(t-t_0)$	$e^{-j2\pi ft_0}$
$e^{j2\pi f_0 t}$	$\delta(f-f_0)$
$\cos(2\pi f_0 t)$	$\frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)$
$\sin(2\pi f_0 t)$	$-\frac{1}{2j}\delta(f + f_0) + \frac{1}{2j}\delta(f - f_0)$
$\Pi(t)$	$\operatorname{sinc}(f)$
sinc(t)	$\Pi(f)$
$\Lambda(t)$	$\operatorname{sinc}^2(f)$
$\operatorname{sinc}^2(t)$	$\Lambda(f)$
$e^{-\alpha t}u_{-1}(t), \alpha > 0$	$\frac{1}{\alpha + j2\pi f}$
$te^{-\alpha t}u_{-1}(t), \alpha > 0$	$\frac{1}{(\alpha + j 2\pi f)^2}$
$e^{-\alpha t }$	$\frac{2\alpha}{\alpha^2 + (2\pi f)^2}$
$e^{-\pi t^2}$	$e^{-\pi f^2}$
sgn(t)	$\frac{1}{j\pi f}$
$u_{-1}(t)$	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$
$\delta'(t)$	$j2\pi f$
$\delta^{(n)}(t)$	$(j2\pi f)^n$
- 1	$-j\pi \operatorname{sgn}(f)$
$\sum_{n=-\infty}^{n=+\infty} \delta(t-nT_0)$	$\frac{1}{T_0} \sum_{n=-\infty}^{n=+\infty} \delta\left(f - \frac{n}{T_0}\right)$

38

Basic Properties of the Fourier Transform (38/38)

TABLE 2.2 TABLE OF FOURIER-TRANSFORM PROPERTIES

Signal	Fourier Transform
$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$
X(t)	x(-f)
x(at)	$\frac{1}{ a }X\left(rac{f}{a} ight)$
$x(t-t_0)$	$e^{-j2\pi ft_0}X(f)$
$e^{j2\pi f_0 t} x(t)$	$X(f-f_0)$
$x(t) \star y(t)$	X(f)Y(f)
x(t)y(t)	$X(f) \star Y(f)$
$\frac{d}{dt}x(t)$	$j2\pi f X(f)$
$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$
tx(t)	$\left(rac{j}{2\pi} ight)rac{d}{df}X(f)$
$t^n x(t)$	$\left(rac{j}{2\pi} ight)^n rac{d^n}{df^n} X(f)$
$\int_{-\infty}^t x(\tau) d\tau$	$\frac{X(f)}{j2\pi f} + \frac{1}{2}X(0)\delta(f)$

Fourier Transform for Periodic Signals (1/3)

• Let x(t) be a periodic signal with the period T_0 . Let $\{x_n\}$ denote the Fourier series coefficients corresponding to this signal. There exists another way to find $\{x_n\}$ through the Fourier transform of the truncated signal $x_{T_0}(t)$ as

$$x_{T_0}(t) = \begin{cases} x(t), & -\frac{T_0}{2} < t \le \frac{T_0}{2} \\ 0, & otherwise \end{cases}$$

• Rewrite x(t) in terms of $x_{T_0}(t)$

$$x(t) = x_{T_0}(t) \star \sum_{n=-\infty}^{\infty} \delta(t - nT_0).$$

Taking the Fourier transform on both sides of x(t), we obtain

$$X(f) = X_{T_0}(f) \left[\frac{1}{T_0} \sum_{n = -\infty}^{\infty} \delta(f - \frac{n}{T_0}) \right]$$

Fourier Transform for Periodic Signals (2/3)

• *X*(*f*) can be further rewritten as

$$X(f) = \frac{1}{T_0} \left[\sum_{n=-\infty}^{\infty} X_{T_0}(\frac{n}{T_0}) \delta(f - \frac{n}{T_0}) \right].$$

• Consider the Fourier series of x(t). We have

$$x(t) = \sum_{n=-\infty}^{\infty} x_n e^{j2\pi \frac{n}{T_0}t}$$

Take Fourier transform on both sides of x(t). We obtain

$$X(f) = \sum_{n=-\infty}^{\infty} x_n \delta(f - \frac{n}{T_0}).$$

We thus conclude

$$x_n = \frac{1}{T_0} X_{T_0} \left(\frac{n}{T_0} \right)$$
 (Eq. 2.3.64)

Fourier Transform for Periodic Signals (3/3)

- Given the periodic signal *x*(*t*), we can find *x_n* by using the following steps:
 - First, we determine the truncated signal $X_{T_0}(t)$
 - Then, we determine the Fourier transform of the truncated signal using Table 2.1 and the Fourier-transform properties
 - Finally, we evaluate the Fourier transform of the truncated signal at $f=n/T_0$ and scale it by $1/T_0$, as shown in Eq. (2.3.64)

Transmission over LTI Systems (1/7)

- Let X(f), H(f), and Y(f) be the Fourier transforms of the input, system impulse response, and the output, respectively. Thus,
 Y(f)=H(f)X(f)
- Example 2.3.23. Let the input to an LTI system be the signal

 $x(t) \equiv \operatorname{sinc}(W_1 t)$

and let the impulse response of the system be

 $h(t) = \operatorname{sinc}(W_2 t).$

Determine the output signal.

Transmission over LTI Systems (2/7)

• Example 2.3.23. (Cont'd) First, we transform the signals to the frequency domain. Thus, we obtain

$$X(f) = \frac{1}{W_1} \prod(\frac{J}{W_1})$$

and

Transmission over LTI Systems (3/7)

• Example 2.3.23. (Cont'd) To obtain the output in the frequency domain, we have

$$Y(f) = X(f)H(f)$$

= $\frac{1}{W_1W_2}\Pi(\frac{f}{W_1})\Pi(\frac{f}{W_2})$
= $\begin{cases} \frac{1}{W_1W_2}\Pi(\frac{f}{W_1}), & W_1 \le W_2 \\ \frac{1}{W_1W_2}\Pi(\frac{f}{W_2}), & W_1 > W_2 \end{cases}$

From this result, we obtain

$$y(t) = \begin{cases} \frac{1}{W_2} \sin c(W_1 t), & W_1 \le W_2 \\ \frac{1}{W_1} \sin c(W_2 t), & W_1 > W_2 \end{cases}$$

Transmission over LTI Systems (4/7)

• The bandwidth of a filter is the set of positive frequencies that a filter can pass

Figure 2.45 Various filter types.

Transmission over LTI Systems (5/7)

- For nonideal lowpass or bandpass filters, the bandwidth is usually defined as the band of frequencies at which the power-transfer ratio of the filter is half of the maximum power-transfer ratio
- This bandwidth is usually called the 3-dB bandwidth of the filter, because reducing the power by a factor of two is equivalent to decreasing it by 3 dB on the logarithmic scale

Transmission over LTI Systems (6/7)

Figure 2.46 3 dB bandwidth of filters in Example 2.3.24.

48

Transmission over LTI Systems (7/7)

• **Example 2.3.24.** The magnitude of the transfer function of a filter is given by

$$H(f) = \frac{1}{\sqrt{1 + (\frac{f}{10000})^2}}$$

Determine the filter type and its 3 dB bandwidth.

• This is a lowpass filter. A 3-dB bandwidth is10 kHz

