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Chapter 2  Signals and Linear 

Systems (IV) 
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 Linearity. The Fourier-transform operation is linear. That is, 

if x1(t) and x2(t) are signals with Fourier transforms X1(f) and 

X2(f) respectively, the Fourier transform of αx1(t)+βx2(t) is 

αX1(f)+βX2(f), where α and β are two arbitrary (real or 

complex) scalars 

 Example 2.3.4. Determine the Fourier transform of u-1(t). 

The unit-step signal can be rewritten as 

 

                 

     We have    

                     F  [u-1(t)]=F  [                  ] 
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 Duality. If X(f)=F  [x(t)] then 

                         x(f)=F  [X(-t)] 

                    and  

                         x(-f)=F  [X(t)] 

 To show this property, we begin with the inverse Fourier-

transform relation  

 

     Then, we introduce the change of variable u=-f to obtain 

 

     Let t=f, we have 
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 Finally, substituting t for u, we get 

 

    or 

                           x(f)=F  [X(-t)]. 

 Using the same technique once more, we obtain 

                           x(-f)=F  [X(t)] 
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 Example 2.3.5. Determine the Fourier transform of sinc(t). 

    Note that Π(t) is an even signal and, therefore, that Π(f)= 
Π(-f). We can use the duality theorem to obtain 

                         F  [sinc(t)]=Π(f)= Π(-f) 

 Example 2.3.6. Determine the Fourier transform of 1/t. 

    We already have 

                        F  [sgn(t)] 

    to have 

                        F  [       ]=sgn(-f)=-sgn(f). 

    By the linearity theorem, we have 

                          F  [    ]=-jπsgn(f). 
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 Shift in Time Domain. A shift of t0 in the time origin 

causes a phase shift of –2πft0 in the frequency domain. In 

other words, 

                       F  [x(t-t0)]=e-j2πft0F   [x(t)]. 

    To prove this, we have 

                   F  [x(t-t0)]= 

    With a change of variable of u=t-t0, we obtain 

                   F  [x(t-t0)] 

 

 

                                                F  [x(t)] 
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 Example 2.3.7. Determine the Fourier transform of the 

signal shown in Fig. 2.37. 

 We have  

 

    By applying the shift theorem, we obtain 

           F  [x(t)] 
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 Example 2.3.8. Determine the Fourier transform of the 

impulse train 

 

 The Fourier-series expansion of x(t) can be represented as 

                   

    Taking the Fourier transform of both sides of the above 

equation, we obtain 

 

    If we replace 1/T0 with f0, X(f) can be written as 
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 Scaling. For any real a≠0, we have 

                      F  [x(at)]= 

 To see this, we note that 

                      F  [x(at)]  

    and make the change in variable u=at. Then,  

            F  [x(at)]  

 

 

 Note that in the pervious expression, if |a|>1, then x(at) is a 

contracted form of x(t), whereas if |a|<1, x(at) is an 

expanded version of x(t) 
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 If we expand a signal in the time domain, its frequency-

domain representation (Fourier transform) contracts; if we 

contract a signal in the time domain, its frequency domain 

representation expands 

 Since contracting a signal in the time domain makes the 

changes in the signal more abrupt, thus increasing its 

frequency content 
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 Example 2.3.9. Determine the Fourier transform of the 

signal 

 

 

 x(t) can be represented as                       . Using the linearity, 

time shift, and scaling properties, we have 

           F  [             ]=3e-4jπfF   [        ] 
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 Convolution. If the signals x(t) and y(t) both possess 

Fourier transforms, then  

           F  [x(t)★y(t)]=F  [x(t)]‧F  [y(t)]=X(f)‧Y(f) 

 For a proof, we have 

 F  [x(t)★y(t)] 

 

 

    Now with the change of variable u=t-τ, we have 

 

    Therefore,  
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dtedtyx ftj  2)()( 






  



 

.)()( 2)(2   dedtetyx fjtfj 







  



 

)()()( 2)(2 fYdueuydtety fujtfj  







 


  )()()()( 2 fYfXdefYx fj  


  



Basic Properties of the Fourier 

Transform (12/38) 

13 

 Finding the response of an LTI system to a given input is 

much easier in the frequency domain than it is the time 

domain. This theorem is the basis of the frequency-domain 

analysis of LTI systems 

 Example 2.3.10. Determine the Fourier transform of the 

signal Λ(t) 

 It is enough to note that Λ(t)=Π(t)★Π(t) and use the 

convolution theorem.  

    We obtain 

            F  [Λ(t)]=F  [Π(t)]‧F  [Π(t)]=sinc2(f) 
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 Modulation. The Fourier transform of x(t)ej2πf0t is X(f-f0) 

 To show this relation, we have 

    F  [x(t)ej2πf0t]  

 

 

 

 Example 2.3.12. Determine the Fourier transform of 
x(t)=ej2πf0t. 

                   F  [ej2πf0t]=F  [1ej2πf0t] 

 

    Note that since x(t) is not real, its Fourier transform does not 
have the Hermitian symmetry 
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 Example 2.3.13. Determine the Fourier transform of the 

signal cos(2πf0t) 

    We have  

              F  [cos(2πf0t)]=F  [                                ] 

 

 Example 2.3.14. Determine the Fourier transform of the 

signal x(t)cos(2πf0t) 

    We have 

            F  [x(t)cos(2πf0t)]=F  [                                          ] 
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 Example 2.3.15. Determine the Fourier transform of the 

signal 
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 Example 2.3.15. (Cont’d) 

    Note that x(t) can be expressed as 

                        x(t)=Π(t)cos(πt). 

     Therefore,  

          F  [Π(t)cos(πt)]   
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 Parseval’s Relation. If the Fourier transforms of the signals 

x(t) and y(t) are denoted by X(f) and Y(f) respectively, then 

 

 

 Rayleigh’s theorem. If we substitute y(t)=x(t) into 

Parseval’s relation, we obtain 
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 Example 2.3.16. Use Parseval’s relation or Rayleigh’s 

theorem, determine the values of the integrals  

 

    and  

 

 We have F  [sinc2(t)]=Λ(f). Using Rayleigh’s theorem with 

x(t)=sinc2(t), we get 
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 Example 2.3.16. (Cont’d) 

 Note that F  [sinc(t)]= Π(f); therefore, by Parseval’s theorem, 

we have 
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 Example 2.3.16. (Cont’d) 
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 Autocorrelation. The (time) autocorrelation function of 

the signal x(t) is denoted by Rx(τ) and is defined by 

 

    The autocorrelation theorem states that 

                          F  [Rx(τ)]=|X(f)|2 

 We note that 

                      

 

                                  =x(τ)★x*(-τ) 

        and              F  [x*(-τ)] 
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 Differentiation. The Fourier transform of the derivative of 

a signal can be obtained from the relation 

                           F  [           ]=j2πfX(f) 

 To see this, we have 

 

 

 

     We then conclude that 

                      F  -1[j2πfX(f)]  

     or  

                      F  [          ]=j2πfX(f) 

)(tx
dt

d





 dfefX

dt

d
tx

dt

d ftj 2)()(

.)(2 2





 dfeffXj ftj 

)(tx
dt

d


)(tx
dt

d



Basic Properties of the Fourier 

Transform (24/38) 

25 

 With repeated application of the differentiation theorem, we 

obtain the relation 

                    F  [           ]=(j2πf )nX(f) 
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 Example 2.3.17. Determine the Fourier transform of the 

signal shown in Fig. 2.41. 
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 Example 2.3.17. (Cont’d)  

 Obviously,                       Therefore, by applying the 

differentiation theorem, we have 

                 F  [x(t)]=F   [            ] 

                              =j2πfF   [      ] 

                              =j2πf sinc2(f) 
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 Differentiation in Frequency Domain. We begin with 

                  F  [tx(t)]=          X(f). 

    Repeated use of this theorem yields 

                  F  [tnx(t)]=              X(f). 

 To show this, we have 

 

 

 

 

 

                 F  [tx(t)]=        X(f) 

df

dj

2

n

nn

df

dj









2






 dtetxfX ftj 2)()(






 dtetx
df

fdX ftj

df
d 2)(

)(






 dtetxtj ftj  2)()2(






 dtettx
df

fdXj ftj 



2)(
)(

2

df

dj

2



Basic Properties of the Fourier 

Transform (28/38) 

29 

 Example 2.3.18. Determine the Fourier transform of x(t)=t 

 Setting y(t)=1 and using the relation F  [ty(t)]=         Y(f), 

    we have 

                  F  [ty(t)]=F  [t]         
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 Integration. The Fourier transform of the integral of a 

signal can be determined from the relation 

                  F   

 To show this, we start with the result of Problem 2.15 to 

obtain 

                                                 ★ 

    Now using the convolution theorem and the Fourier 

transform of u-1(t), we have 
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 Example 2.3.19. Determine the Fourier transform of the 

signal x(t) shown in Fig. 2.42. 
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 Example 2.3.19. (Cont’d) 

 Note that  

 

    Using the integration theorem, we obtain 

                 F   
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 Moments. If F  [x(t)]=X(f), then the nth moment of x(t) can 

be obtained from the relation  

 

 

 This can be shown by using the differentiation in the 

frequency domain result. We have 

                  F    

      This means that  

 

     Letting  f=0, we obtain the desired result 
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 For the special case of n=0, we obtain this simple relation for 

finding the area under a signal, i.e.,  
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 Example 2.3.20. Determine the nth moment of  

    x(t)=e-αtu-1(t), where α>0 

 First we solve for X(f). We have 

 

 

 

    By differentiating n times, we obtain 
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 Example 2.3.21. Determine the Fourier transform of  

    x(t)=e-α|t|, where α>0. 
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 Example 2.3.21.(Cont’d) We have 

               x(t)=e-αtu-1(t)+eαtu-1(-t)=x1(t)+x2(t) 

    We already see that 

             F  [x1(t)]=F   [e-αtu-1(t)] 

    and  

             F  [x2(-t)] 

     Hence by the linearity property, we have 

               F  [x(t)] 
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 Let x(t) be a periodic signal with the period T0. Let {xn} 

denote the Fourier series coefficients corresponding to this 

signal. There exists another way to find {xn} through the 

Fourier transform of the truncated signal            as  

 

 

 Rewrite x(t) in terms of 
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 X(f) can be further rewritten as 

 

 

 Consider the Fourier series of x(t). We have  

 

    Take Fourier transform on both sides of x(t). We obtain 

                                        

 

    We thus conclude 

                                                                             (Eq. 2.3.64) 
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 Given the periodic signal x(t), we can find xn by using the 

following steps: 

 First, we determine the truncated signal 

 Then, we determine the Fourier transform of the truncated 

signal using Table 2.1 and the Fourier-transform properties 

 Finally, we evaluate the Fourier transform of the truncated 

signal at f=n/T0 and scale it by 1/T0, as shown in Eq. (2.3.64) 
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 Let X(f), H(f), and Y(f) be the Fourier transforms of the input, 

system impulse response, and the output, respectively. Thus, 

                              Y(f)=H(f)X(f) 

 Example 2.3.23. Let the input to an LTI system be the 

signal  

                                 x(t)=sinc(W1t)  

    and let the impulse response of the system be  

                                 h(t)=sinc(W2t).  

    Determine the output signal. 
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 Example 2.3.23. (Cont’d) First, we transform the signals 

to the frequency domain. Thus, we obtain 
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 Example 2.3.23. (Cont’d) To obtain the output in the 

frequency domain, we have 

                               Y(f)=X(f)H(f) 

 

 

 

 

    From this result, we obtain 
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 The bandwidth of a filter is the set of positive frequencies 

that a filter can pass 
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 For nonideal lowpass or bandpass filters, the bandwidth is 

usually defined as the band of frequencies at which the 

power-transfer ratio of the filter is half of the maximum 

power-transfer ratio 

 This bandwidth is usually called the 3-dB bandwidth of the 

filter, because reducing the power by a factor of two is 

equivalent to decreasing it by 3 dB on the logarithmic scale 
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 Example 2.3.24. The magnitude of the transfer function of 

a filter is given by  

 

 

    Determine the filter type and its 3 dB bandwidth. 

 This is a lowpass filter. A 3-dB bandwidth is10 kHz 
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