Chapter 2 Signals and Linear Systems (III)

Parseval's Relation (1/3)

- Parseval's relation says that the power of a periodic signal is the sum of the power contents of its components in the Fourier-series representation of that signal
- Or, equivalently, the power content of the periodic signal is the sum of the power contents of harmonics
- Let the Fourier-series representation of the periodic signal x(t) is given by

$$x(t) = \sum_{n=-\infty}^{+\infty} x_n e^{j2\pi \frac{n}{T_0}t}$$

The complex conjugate of x(t) is

$$x^{*}(t) = \sum_{n=-\infty}^{+\infty} x_{n}^{*} e^{-j2\pi \frac{n}{T_{0}}t}$$

Parseval's Relation (2/3)

By multiplying the two equations, we have

$$|x(t)|^2 = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{\infty} x_n x_m^* e^{j2\pi \frac{n-m}{T_0}t}$$

• We integrate both sides over one period and note

$$\int_{\alpha}^{\alpha+T_0} e^{j2\pi\frac{n-m}{T_0}t} dt = T_0 \delta_{mn} = \begin{cases} T_0, & n=m\\ 0, & n\neq m \end{cases}$$

Thus,
$$\int_{\alpha}^{\alpha+T_0} |x(t)|^2 dt = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x_n x_m^* T_0 \delta_{mn}$$

$$= T_0 \sum_{n=-\infty}^{\infty} |x_n|^2$$

Parseval's Relation (3/3)

• Finally, we have

$$\frac{1}{T_0} \int_{\alpha}^{\alpha + T_0} |x(t)|^2 dt = \sum_{n = -\infty}^{\infty} |x_n|^2$$

Fourier Transform – From Fourier Series to Fourier Transforms (1/10)

- If we apply Fourier transform to a nonperiodic signal, the resulting spectrum will no longer be discrete
- The Fourier transform (or Fourier integral) of x(t) is defined by

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

• The original signal can be obtained from its Fourier transform by

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df$$

Fourier Transform – From Fourier Series to Fourier Transforms (2/10)

- The sufficient conditions for x(t) to have a Fourier transform are Dirichlet conditions:
- 1. x(t) is absolutely integrable on the real line; that is

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

- 2. The number of maxima and minima of x(t) in any finite interval on the real line is finite
- 3. The number of discontinuities of x(t) in any finite interval on the real line is finite

Fourier Transform – From Fourier Series to Fourier Transforms (3/10)

- X(f) is generally a complex function. Its magnitude |X(f)| and phase $\angle X(f)$ represent the amplitude and phase of various frequency components in x(t)
- We employ the following notation:

$$X(f) = \mathscr{F}[x(t)]$$

and

$$x(t) = \mathcal{F}^{-1}[X(f)].$$

Sometimes we use a shorthand for both relations:

$$x(t) \Leftrightarrow X(f)$$

Fourier Transform – From Fourier Series to Fourier Transforms (4/10)

• If the variable in the Fourier transform is ω rather than f, then we have

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

and

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{-j\omega t} d\omega$$

Since

$$\int_{-\infty}^{\infty} \delta(t) e^{-j2\pi ft} dt = 1,$$

we have

$$\delta(t) = \int_{-\infty}^{\infty} e^{j2\pi ft} df$$

and

$$\delta(t-\tau) = \int_{-\infty}^{\infty} e^{j2\pi f(t-\tau)} df.$$

Fourier Transform – From Fourier Series to Fourier Transforms (5/10)

• Example 2.3.1. Find the Fourier transform of $\Pi(t)$. We have

$$\mathcal{F}[x(t)] = \int_{-\infty}^{+\infty} \Pi(t)e^{-j2\pi ft}dt$$

$$= \int_{-\frac{1}{2}}^{+\frac{1}{2}} e^{-j2\pi ft}dt$$

$$= \frac{1}{-j2\pi f} \left[e^{-j\pi f} - e^{j\pi f}\right]$$

$$= \frac{\sin(\pi f)}{\pi f}$$

$$= \sin c(f).$$

Therefore

$$\mathcal{F}[\Pi(t)] = \operatorname{sinc}(f)$$

Fourier Transform – From Fourier Series to Fourier Transforms (6/10)

• Example 2.3.1(Cont'd)

Figure 2.33 $\Pi(t)$ and its Fourier transform.

Fourier Transform – From Fourier Series to Fourier Transforms (7/10)

• **Example 2.3.2.** Determine the Fourier transform of an impulse signal $x(t) = \delta(t)$.

$$\mathcal{F}[\delta(t)]=1$$
$$\mathcal{F}^{-1}[1]=\delta(t)$$

Figure 2.34 Impulse signal and its spectrum.

Fourier Transform – From Fourier Series to Fourier Transforms (8/10)

• Example 2.3.3. Determine the Fourier transform of signal sgn(t).

We begin with the definition of sgn(t) as a limit of an exponential function and given by

$$x_n(t) = \begin{cases} e^{-\frac{t}{n}}, t > 0 \\ -e^{\frac{t}{n}}, t < 0 \\ 0, t = 0. \end{cases}$$

For this signal, the Fourier transform is

$$X_n(f) = \frac{-j4\pi f}{\frac{1}{n^2} + 4\pi^2 f^2}$$

Fourier Transform – From Fourier Series to Fourier Transforms (9/10)

• Example 2.3.3. (Cont'd) Now, letting $n \to \infty$, we obtain

$$\mathcal{F}[\operatorname{sgn}(t)] = \lim_{n \to \infty} X_n(f)
= \lim_{n \to \infty} \frac{-j4\pi f}{\frac{1}{n^2} + 4\pi^2 f^2}
= \frac{1}{j\pi f}$$

Fourier Transform – From Fourier Series to Fourier Transforms (10/10)

• Example 2.3.3. (Cont'd)

Figure 2.35 The signum signal and its spectrum.

Fourier Transform – Fourier Transform of Real, Even, and Odd Signals (1/3)

• The Fourier transform relation can be generally written as

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$
$$= \int_{-\infty}^{\infty} x(t)\cos(2\pi ft)dt - j\int_{-\infty}^{\infty} x(t)\sin(2\pi ft)dt$$

• If x(t) is real, we have

$$X(t) = X_e(t) + X_o(t).$$

X(f) can be rewritten as

$$\begin{split} X(f) &= \int_{-\infty}^{\infty} x_e(t) \cos(2\pi f t) dt + \int_{-\infty}^{\infty} x_o(t) \cos(2\pi f t) dt \\ &- j \int_{-\infty}^{\infty} x_e(t) \sin(2\pi f t) dt - j \int_{-\infty}^{\infty} x_o(t) \sin(2\pi f t) dt. \end{split}$$

Term 2 and term 3 are zero. X(f) is reduced to

$$X(f) = \int_{-\infty}^{\infty} x_e(t) \cos(2\pi f t) dt - j \int_{-\infty}^{\infty} x_o(t) \sin(2\pi f t) dt$$

Fourier Transform – Fourier Transform of Real, Even, and Odd Signals (2/3)

• We also note that the real part of X(f) is an even function of the variable f. Likewise, the imaginary part of X(f) is an odd function of the variable f

Re[
$$X(f)$$
]=Re[$X(-f)$], even Im[$X(f)$]=-Im[$X(-f)$], odd

$$\rightarrow X(-f)=X^*(f)$$
, Hermitian

We also have

$$\rightarrow$$
 $|X(-f)| = |X(f)|$, even
 $\angle X(-f) = -\angle X(f)$, odd

Fourier Transform – Fourier Transform of Real, Even, and Odd Signals (3/3)

• If x(t) is real and even, X(f) can further be reduced to

$$X(f) = \int_{-\infty}^{\infty} x_e(t) \cos(2\pi f t) dt$$

- \rightarrow X(f) real, even
- If x(t) is real and odd, X(f) is now be reduced to

$$X(f) = -i \int_{-\infty}^{\infty} x_o(t) \sin(2\pi f t) dt$$

 \rightarrow X(f) imaginary, odd

Fourier Transform – Signal Bandwidth (1/1)

- We define the bandwidth of a real signal x(t) as the range of positive frequencies present in the signal
- In order to find the bandwidth of x(t), we first find X(f), which is the Fourier transform of x(t); then, we find the range of positive frequencies that X(f) occupies
- The bandwidth is $BW=W_{\text{max}}-W_{\text{min}}$, where W_{max} is the highest positive frequency present in X(f) and W_{min} is the lowest positive frequency present in X(f)