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Chapter 2  Signals and Linear 

Systems (III) 



Parseval’s Relation (1/3) 

2 

 Parseval’s relation says that the power of a periodic signal is 

the sum of the power contents of its components in the 

Fourier-series representation of that signal 

 Or, equivalently, the power content of the periodic signal is 

the sum of the power contents of harmonics 

 Let the Fourier-series representation of the periodic signal x(t) 

is given by 

 

    The complex conjugate of x(t) is 
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Parseval’s Relation (2/3) 
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 By multiplying the two equations, we have 

 

 

 We integrate  both sides over one period and note 

 

 

     Thus,   
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Parseval’s Relation (3/3) 
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 Finally, we have 
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Fourier Transform – From Fourier 

Series to Fourier Transforms (1/10) 
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 If we apply Fourier transform to a nonperiodic signal, the 

resulting spectrum will no longer be discrete 

 The Fourier transform (or Fourier integral) of x(t) is defined 

by 

 

 The original signal can be obtained from its Fourier 

transform by 
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Fourier Transform – From Fourier 

Series to Fourier Transforms (2/10) 
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 The sufficient conditions for x(t) to have a Fourier transform 

are Dirichlet conditions: 

1. x(t) is absolutely integrable on the real line; that is 

 

 

2. The number of maxima and minima of x(t) in any finite 

interval on the real line is finite 

3. The number of discontinuities of x(t) in any finite interval 

on the real line is finite 
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Fourier Transform – From Fourier 

Series to Fourier Transforms (3/10) 
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 X(f) is generally a complex function. Its magnitude |X(f)| 

and phase ∠X(f) represent the amplitude and phase of 

various frequency components in x(t) 

 We employ the following notation: 

                           X(f)=F  [x(t)] 

    and 

                           x(t)=F  -1[X(f)]. 

    Sometimes we use a shorthand for both relations: 

                            )()( fXtx 



Fourier Transform – From Fourier 

Series to Fourier Transforms (4/10) 
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 If the variable in the Fourier transform is ω rather than f, 

then we have 

 

    and  

 

 Since  

 

    we have 

 

    and                     
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Fourier Transform – From Fourier 

Series to Fourier Transforms (5/10) 
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 Example 2.3.1. Find the Fourier transform of Π(t). 

    We have 

                   F  [x(t)] 

 

 

 

 

 

     Therefore  

                     F  [Π(t)]=sinc(f) 
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Fourier Transform – From Fourier 

Series to Fourier Transforms (6/10) 
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 Example 2.3.1(Cont’d) 



Fourier Transform – From Fourier 

Series to Fourier Transforms (7/10) 
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 Example 2.3.2. Determine the Fourier transform of an 

impulse signal x(t)=δ(t). 

                           F  [δ(t)]=1 

                           F  -1[1]= δ(t) 



Fourier Transform – From Fourier 

Series to Fourier Transforms (8/10) 

12 

 Example 2.3.3. Determine the Fourier transform of signal 

sgn(t). 

    We begin with the definition of sgn(t) as a limit of an 

exponential function and given by 

 

 

 

    For this signal, the Fourier transform is  
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Fourier Transform – From Fourier 

Series to Fourier Transforms (9/10) 
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 Example 2.3.3. (Cont’d) Now, letting n → ∞, we obtain 

                  F  [sgn(t)] )(lim fX n
n 
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Fourier Transform – From Fourier 

Series to Fourier Transforms (10/10) 
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 Example 2.3.3. (Cont’d) 



Fourier Transform – Fourier Transform 

of Real, Even, and Odd Signals (1/3) 
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 The Fourier transform relation can be generally written as 

 

 

 If x(t) is real, we have 

                       x(t)=xe(t)+xo(t). 

    X(f) can be rewritten as 

 

 

     Term 2 and term 3 are zero. X(f) is reduced to  
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Fourier Transform – Fourier Transform 

of Real, Even, and Odd Signals (2/3) 
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 We also note that the real part of X(f) is an even function of 

the variable f . Likewise, the imaginary part of X(f) is an odd 

function of the variable f 

                  Re[X(f)]=Re[X(-f)], even 

                       Im[X(f)]=-Im[X(-f)], odd 

                  X(-f)=X*(f), Hermitian 

    We also have 

                 |X(-f)|=|X(f)|, even 

                                                      , odd 
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Fourier Transform – Fourier Transform 

of Real, Even, and Odd Signals (3/3) 
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 If x(t) is real and even, X(f) can further be reduced to 

 

                       X(f) real, even  

 If x(t) is real and odd, X(f) is now be reduced to 

 

                       X(f) imaginary, odd 
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Fourier Transform – Signal Bandwidth  

(1/1) 
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 We define the bandwidth of a real signal x(t) as the range of 

positive frequencies present in the signal 

 In order to find the bandwidth of x(t), we first find X(f), 

which is the Fourier transform of x(t); then, we find the 

range of positive frequencies that X(f) occupies 

 The bandwidth is BW=Wmax-Wmin, where Wmax is the highest 

positive frequency present in X(f) and Wmin is the lowest 

positive frequency present in X(f) 


