Chapter 2 Signals and Linear Systems (III)

Parseval's Relation (1/3)

- Parseval's relation says that the power of a periodic signal is the sum of the power contents of its components in the Fourier-series representation of that signal
- Or, equivalently, the power content of the periodic signal is the sum of the power contents of harmonics
- Let the Fourier-series representation of the periodic signal $x(t)$ is given by

$$
x(t)=\sum_{n=-\infty}^{+\infty} x_{n} e^{j 2 \pi \frac{n}{T_{0}} t}
$$

The complex conjugate of $x(t)$ is

$$
x^{*}(t)=\sum_{n=-\infty}^{+\infty} x_{n}^{*} e^{-j 2 \pi \frac{n}{T_{0}} t}
$$

Parseval's Relation (2/3)

- By multiplying the two equations, we have

$$
|x(t)|^{2}=\sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{\infty} x_{n} x_{m}^{*} e^{j 2 \pi \frac{n-m}{T_{0}} t}
$$

- We integrate both sides over one period and note

$$
\int_{\alpha}^{\alpha+T_{0}} e^{j 2 \pi \frac{n-m}{T_{0}} t} d t=T_{0} \delta_{m n}=\left\{\begin{array}{cc}
T_{0}, & n=m \\
0, & n \neq m
\end{array}\right.
$$

Thus,

$$
\begin{aligned}
\int_{\alpha}^{\alpha+T_{0}}|x(t)|^{2} d t & =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x_{n} x_{m}^{*} T_{0} \delta_{m n} \\
& =T_{0} \sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{2}
\end{aligned}
$$

Parseval's Relation (3/3)

- Finally, we have

$$
\frac{1}{T_{0}} \int_{\alpha}^{\alpha+T_{0}}|x(t)|^{2} d t=\sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{2}
$$

Fourier Transform - From Fourier Series to Fourier Transforms (1/10)

- If we apply Fourier transform to a nonperiodic signal, the resulting spectrum will no longer be discrete
- The Fourier transform (or Fourier integral) of $x(t)$ is defined by

$$
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t
$$

- The original signal can be obtained from its Fourier transform by

$$
x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi t t} d f
$$

Fourier Transform - From Fourier Series to Fourier Transforms (2/10)

- The sufficient conditions for $x(t)$ to have a Fourier transform are Dirichlet conditions:

1. $x(t)$ is absolutely integrable on the real line; that is

$$
\int_{-\infty}^{\infty}|x(t)| d t<\infty
$$

2. The number of maxima and minima of $x(t)$ in any finite interval on the real line is finite
3. The number of discontinuities of $x(t)$ in any finite interval on the real line is finite

Fourier Transform - From Fourier Series to Fourier Transforms (3/10)

- $X(f)$ is generally a complex function. Its magnitude $|X(f)|$ and phase $\angle X(f)$ represent the amplitude and phase of various frequency components in $x(t)$
- We employ the following notation:

$$
X(f)=\mathscr{F}[x(t)]
$$

and

$$
x(t)=\mathscr{F}^{-1}[X(f)] .
$$

Sometimes we use a shorthand for both relations:

$$
x(t) \Leftrightarrow X(f)
$$

Fourier Transform - From Fourier

Series to Fourier Transforms (4/10)

- If the variable in the Fourier transform is ω rather than f, then we have

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

and

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{-j \omega t} d \omega
$$

- Since

$$
\int_{-\infty}^{\infty} \delta(t) e^{-j 2 \pi f t} d t=1
$$

we have

$$
\delta(t)=\int_{-\infty}^{\infty} e^{j 2 \pi f t} d f
$$

and

$$
\delta(t-\tau)=\int_{-\infty}^{\infty} e^{j 2 \pi f(t-\tau)} d f
$$

Fourier Transform - From Fourier Series to Fourier Transforms (5/10)

- Example 2.3.1. Find the Fourier transform of $\Pi(t)$.

We have

$$
\begin{aligned}
\mathscr{F}[x(t)] & =\int_{-\infty}^{+\infty} \Pi(t) e^{-j 2 \pi f t} d t \\
& =\int_{-\frac{1}{2}}^{+\frac{1}{2}} e^{-j 2 \pi f t} d t \\
& =\frac{1}{-j 2 \pi f}\left[e^{-j \pi f}-e^{j \pi f}\right] \\
& =\frac{\sin (\pi f)}{\pi f} \\
& =\sin c(f)
\end{aligned}
$$

Therefore

$$
\mathscr{F}[\Pi(t)]=\operatorname{sinc}(f)
$$

Fourier Transform - From Fourier

 Series to Fourier Transforms (6/10)- Example 2.3.1(Cont'd)

Figure $2.33 \quad \Pi(t)$ and its Fourier transform.

Fourier Transform - From Fourier

 Series to Fourier Transforms (7/10)- Example 2.3.2. Determine the Fourier transform of an impulse signal $x(t)=\delta(t)$.

$$
\begin{aligned}
& \mathscr{F}[\delta(t)]=1 \\
& \mathscr{F}^{-1}[1]=\delta(t)
\end{aligned}
$$

Figure 2.34 Impulse signal and its spectrum.

Fourier Transform - From Fourier

Series to Fourier Transforms (8/10)

- Example 2.3.3. Determine the Fourier transform of signal $\operatorname{sgn}(t)$.
We begin with the definition of $\operatorname{sgn}(t)$ as a limit of an exponential function and given by

$$
x_{n}(t)=\left\{\begin{array}{c}
e^{-\frac{t}{n}}, t>0 \\
-e^{\frac{t}{n}}, t<0 \\
0, t=0
\end{array}\right.
$$

For this signal, the Fourier transform is

$$
X_{n}(f)=\frac{-j 4 \pi f}{\frac{1}{n^{2}}+4 \pi^{2} f^{2}}
$$

Fourier Transform - From Fourier Series to Fourier Transforms (9/10)

- Example 2.3.3. (Cont'd) Now, letting $n \rightarrow \infty$, we obtain

$$
\begin{aligned}
\mathscr{F}[\operatorname{sgn}(t)] & =\lim _{n \rightarrow \infty} X_{n}(f) \\
& =\lim _{n \rightarrow \infty} \frac{-j 4 \pi f}{\frac{1}{n^{2}}+4 \pi^{2} f^{2}} \\
& =\frac{1}{j \pi f}
\end{aligned}
$$

Fourier Transform - From Fourier Series to Fourier Transforms (10/10)

- Example 2.3.3. (Cont'd)

Fourier Transform - Fourier Transform of Real, Even, and Odd Signals (1/3)

- The Fourier transform relation can be generally written as

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} x(t) \cos (2 \pi f t) d t-j \int_{-\infty}^{\infty} x(t) \sin (2 \pi f t) d t
\end{aligned}
$$

- If $x(t)$ is real, we have

$$
x(t)=x_{e}(t)+x_{o}(t)
$$

$X(f)$ can be rewritten as

$$
\begin{aligned}
X(f)= & \int_{-\infty}^{\infty} x_{e}(t) \cos (2 \pi f t) d t+\int_{-\infty}^{\infty} x_{o}(t) \cos (2 \pi f t) d t \\
& -j \int_{-\infty}^{\infty} x_{e}(t) \sin (2 \pi f t) d t-j \int_{-\infty}^{\infty} x_{o}(t) \sin (2 \pi f t) d t
\end{aligned}
$$

Term 2 and term 3 are zero. $X(f)$ is reduced to

$$
X(f)=\int_{-\infty}^{\infty} x_{e}(t) \cos (2 \pi f t) d t-j \int_{-\infty}^{\infty} x_{o}(t) \sin (2 \pi f t) d t
$$

Fourier Transform - Fourier Transform of Real, Even, and Odd Signals (2/3)

- We also note that the real part of $X(f)$ is an even function of the variable f. Likewise, the imaginary part of $X(f)$ is an odd function of the variable f
$\rightarrow \operatorname{Re}[X(f)]=\operatorname{Re}[X(-f)]$, even $\operatorname{Im}[X(f)]=-\operatorname{Im}[X(-f)]$, odd
$\Rightarrow X(-f)=X^{*}(f)$, Hermitian
We also have

$$
\begin{aligned}
\rightarrow & |X(-f)|=|X(f)|, \text { even } \\
& \angle X(-f)=-\angle X(f), \text { odd }
\end{aligned}
$$

Fourier Transform - Fourier Transform of Real, Even, and Odd Signals (3/3)

- If $x(t)$ is real and even, $X(f)$ can further be reduced to

$$
\begin{aligned}
& X(f)=\int_{-\infty}^{\infty} x_{e}(t) \cos (2 \pi f t) d t \\
& \quad \Rightarrow X(f) \text { real, even }
\end{aligned}
$$

- If $x(t)$ is real and odd, $X(f)$ is now be reduced to

$$
\begin{aligned}
& X(f)=-j \int_{-\infty}^{\infty} x_{o}(t) \sin (2 \pi f t) d t \\
& \quad \rightarrow X(f) \text { imaginary, odd }
\end{aligned}
$$

Fourier Transform - Signal Bandwidth (1/1)

- We define the bandwidth of a real signal $x(t)$ as the range of positive frequencies present in the signal
- In order to find the bandwidth of $x(t)$, we first find $X(f)$, which is the Fourier transform of $x(t)$; then, we find the range of positive frequencies that $X(f)$ occupies
- The bandwidth is $B W=W_{\max }-W_{\min }$, where $W_{\max }$ is the highest positive frequency present in $X(f)$ and $W_{\min }$ is the lowest positive frequency present in $X(f)$

