Chapter 2 Signals and Linear

Systems (lIl)




Parseval’s Relation (1/3)

® Parseval’s relation says that the power of a periodic signal is
the sum of the power contents of its components in the

Fourier-series representation of that signal

® Or, equivalently, the power content of the periodic signal is

the sum of the power contents of harmonics

® Let the Fourier-series representation of the periodic signal x(t)

= j2rit
X(t) = E X.e "
N=—00

The complex conjugate of x(z) is

x — % _—j2rdit
X(t)=> x,e ©
N=-—o0

is given by

(-,




Parseval’s Relation (2/3)

* By multiplying the two equations we have
XOF= 3 S x ke
N=—00 M=—00
* We integrate both sides over one period and note
a+Ty g n=m T y N=mMm
[ dt=T,5, _{ °
o 0, n#m
Thus,

j IxOFdt=Y S %% T

_—oom—oo

= Olenl
N=—0




Parseval’s Relation (3/3)

® Finally, we have

1 a+T, 2 %
ﬁja xOf dt= 3 lx,
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Fourier Transform - From Fourier
Series to Fourier Transforms (1/10)

* It we apply Fourier transtorm to a nonperiodic signal, the

resulting spectrum will no longer be discrete

® The Fourier transtorm (or Fourier integral) of x(t) is detined
by - |
X(f)= j x(t)e 12 dt

® The original signal can be obtained from its Fourier

transform by

X(t) = j“; X (f)el? " df




4 . .
Fourier Transform - From Fourier

Series to Fourier Transforms (2/10)

® The sufficient conditions for x(t) to have a Fourier transtorm

are Dirichlet conditions:

I. x(t) is absolutely integrable on the real line; that is
j | X(t) [dt < o

2. The number of maxima and minima of x(¢) in any finite

interval on the real line is finite

3. The number of discontinuities of x(r) in any finite interval

on the real line is finite




Fourier Transform - From Fourier
Series to Fourier Transforms (3/10)

* X(f)is generally a complex function. Its magnitude | X(f) |
and phase . X(f) represent the amplitude and phase of

various frequency components in x(r)
® We employ the following notation:
X@:7[X(t)]
and
x(t)=.7 [X(H].
Sometimes we use a shorthand for both relations:

X(t) < X(f)




Fourier Transform - From Fourier
Series to Fourier Transforms (4/10)

e [f the variable in the Fourier transform is w rather than f,

then we have

X(w)=[ x(tye ' dt

and 1 -
X(t) = j_w X (w)e *dw
® Since
j“; S(t)e 17dt =1,
we have
5a)=[ie”ﬂdf
and

@ S(t—1) = f;eizﬂf -0 gf,




Fourier Transform - From Fourier
Series to Fourier Transforms (5/10)

® Example 2.3.1. Find the Fourier transform of 11(¢).
We have
o7 (e —j2sft
Jx@] =1 TII(t)e “"dt

Therefore

-/ [I(1)]=sinc(f)




Fourier Transform - From Fourier
Series to Fourier Transforms (6/10)
o Example 2.3.1(Cont’d)

(1) 4,

sinc(f) 4
1
—4 -2 2 4
=5 NA3 \/_] 1\/ NS > f Figure 2.33 T1(s) and its Fourier
: transform.




Fourier Transform - From Fourier
Series to Fourier Transforms (7/10)

* Example 2.3.2. Determine the Fourier transtorm of an
impulse signal x(t)=0(t).
TI60)]=1
7 11)1= 6(t)
sy

A

Figure 2.34 Impulse signal and its spectrum.




Fourier Transform - From Fourier
Series to Fourier Transforms (8/10)

® Example 2.3.3. Determine the Fourier transform of signal
sgn(t).
We begin with the definition of sgn(t) as a limit of an

exponential function and given by
(

e ,t>0
X (t)=1-e" ,t<0
0,t=0.
For this signal, the Fourier transform is
— |44

Xp (1) =

L+ 4rf?
n




4 . .
Fourier Transform - From Fourier

Series to Fourier Transforms (9/10)

* Example 2.3.3. (Cont’d) Now, letting n — 00, we obtain

. — A
= lim —
e L4 47° f

1




Fourier Transform - From Fourier
Series to Fourier Transforms (10/10)
o Example 2.3.3. (Cont’d)

sgn (1) 4
1

—1

X F[sgn (1)]

SIE

7

Figure 2.35 The signum signal and its
spectrum.
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Fourier Transform - Fourier Transform
of Real, Even, and Odd Signals (1/3)

® The Fourier transform relation can be generally written as
X(f)=]" x(t)e*"dt
= j_“; X(t) cos(2ft)dt — j j“; x(t) sin(27ft)dt
® It x(¢) is real, we have
x(t)=x (t)Fx (t).
X(f) can be rewritten as
X(f)= jfo X, (t) cos(2Aft)dt + j“; X_ (t) cos(2ft)dt
] j“; X, (t) sin(2Aft)dt — j j“; X (t) sin(2ft)dt.
Term 2 and term 3 are zero. X(f) is reduced to

X(f)= j"‘; X, (t) cos(2ft)dt — | j“; X (t) sin(27ft)dt




Fourier Transform - Fourier Transform
of Real, Even, and Odd Signals (2/3)

® We also note that the real part of X(f) is an even function of
the variable f . Likewise, the imaginary part of X(f) is an odd
function of the variable f

=2 Re[X(f)]=Re[X(-f)], even
Im[X(f)]=-Im[X(-f)], odd
=2 X(-/H=X"(f), Hermitian
We also have
> | X =] X() |, even
X (=f)=—2X(f), odd




e _ _ ™
Fourier Transform - Fourier Transform

of Real, Even, and Odd Signals (3/3)

® If x(¢) is real and even, X(f) can further be reduced to
X(f)= fw X, (t) cos(2ft)dt
=2 X(f) real, even
* If x(¢) is real and odd, X(f) is now be reduced to
X(f)=—j j_“; X_ (t) sin(27ft)dt
=2 X(f) imaginary, odd




Fourier Transform - Signal Bandwidth

(1/1)

® We define the bandwidth of a real signal x(z) as the range of

positive frequencies present in the signal

® In order to find the bandwidth of x(¢), we first find X(f),
which is the Fourier transtorm of x(¢); then, we find the

range of positive frequencies that X QF) occupies

® The bandwidthis BW=W,_ -W,_.  where W___is the highest
positive frequency present in X(f) and W_. is the lowest
positive frequency present in X(f)




