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Chapter 2  Signals and Linear 

Systems (II) 
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 A system is an interconnection of various elements or devices 

that, from a certain viewpoint, behave as a whole 

 The most important point in the definition of a system is that 

its output must be uniquely defined for any legitimate input 

 This definition can be written as 

                           y(t)=F  [x(t)] 

    where x(t) is the input, y(t) is the output, F    is the operation 

performed by the system 
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 Example 2.1.16.  The input-output relationship 

y(t)=3x(t)+3x2(t) defines a system. For any input x(t), the 

output y(t) is uniquely determined 

 A system is defined by two characteristics: 1) the operation 

that describes the system and 2) the set of legitimate input 

signals 

 The operator F   denotes the operation that describes the 

system 

 X    denotes the space of legitimate input to the system 
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 Example 2.1.17.  The system described by the input-output 

relationship  

                       y(t)=F   [x(t)]= 

    for which X     is the space of all differentiable signals, 

describes the system. This system is referred to as the 

differentiator 

)(tx
dt
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 A discrete-time system accepts discrete-time signals as the input 

and produces discrete-time signal at the output 

 A continuous-time system accepts continuous-time signals as the 

input and produces continuous-time signal at the output 

 Example 2.1.18.  The system described by  

                          y[n]=x[n]-x[n-1] 

    is a discrete-time differentiator 
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 Linear systems are systems for which the superposition 

property is satisfied, i.e., the system’s response to a linear 

combination of the inputs is the linear combination of the 

responses to the corresponding inputs 

 A system F    is linear if and only if, for any two input signals 

x1(t) and x2(t) and for any two scalars α and β, we have  

                   F   [αx1(t)+βx2(t)]=αF   [x1(t)]+βF   [x2(t)] 

    A system that does not satisfy this relationship is called 

nonlinear 
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 Linearity can also be defined in terms of the following two 

properties: 

                  F   [x1(t)+x2(t)]=F   [x1(t)]+F   [x2(t)] 

             F   [αx(t)]=αF   [x(t)]  

 A system that satisfies the first property is called additive, 

and a system that satisfies the second property is called 

homogeneous 

 From the second property, we have F   [0]=0 in a linear 

system. In other words, the response of a linear system to a 

zero input is always zero (for linearity, this is a necessary 

condition but not a sufficient condition) 
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 In a linear system, we can decompose the input into a linear 

combination of some fundamental signals whose output can 

be derived easily 

 We denote the operation of linear systems by L  , rather than 

F 

 Example 2.1.19.  The differentiator is a linear system. The 

system described by y(t)=x2(t) is nonlinear because 

                F  [2x(t)]=4x2(t)≠2x2(t)=2F  [x(t)]    

 Example 2.1.20.  A delay system defined by y(t)=x(t- Δ) is 

linear        
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and Time-Varying Systems (8/12) 

9 

 A system is called time-invariant if its input-output 

relationship does not change with time. This means that a 

delayed version of an input results in a delayed version of the 

output 

 A system is time-invariant if and only if, for all x(t) and all 

values of t0, its response to x(t-t0) is y(t-t0), where y(t) is the 

response of the system to x(t) 
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 Example 2.1.21.  The differentiator is a time-invariant 

system 

 Example 2.1.22.  The modulator, defined by 

y(t)=x(t)cos(2πf0t) is an example of a time-varying system. 

    The response of this system to x(t-t0) is 

                         x(t-t0)cos(2πf0t), 

    which is not equal to y(t-t0) 

 The class of linear time-invariant (LTI) system is particularly 

important. The response of these systems to inputs can be 

derived simply by finding the convolution of the input and 

the impulse response of the system 
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 In a physically realizable system, the output at any time 

depends only on the values of the input signal up to that time 

and does not depend on the future values of the input 

 A system is causal if its output at any time t0 depends on the 

input at times prior to t0, i.e., 

                       y(t0)=F   [x(t) : t≦t0] 

 A necessary and sufficiency condition for an LTI system to be 

causal is that its impulse response h(t) must be a causal signal, 

i.e., for t<0, we must have h(t)=0 

 Noncausal systems are encountered in situation where signals 

are not processed in real time 
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 A differentiator is an example of a causal system since it is 

LTI and its impulse response h(t)=δ’(t), is zero for t<0  

 A modulator is a causal but time-varying system 

 The delay system is causal for Δ≧0 and noncausal for Δ<0, 

since its impulse response δ(t-Δ) is zero for t<0, if Δ>0 and 

nonzero if Δ<0 



Analysis of LTI Systems in the Time 

Domain (1/4) 
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 The impulse response h(t) of a system is the response of the 

system to a unit impulse input δ(t): 

                           h(t)= L   [δ(t)] 

 The output y(t) of an LTI system to any input signal x(t) can 

be expressed by the convolution of h(t) and x(t) 

                                    L 

                                    L 

                                                                 L 

 

                                              =x(t)★h(t) 
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Analysis of LTI Systems in the Time 

Domain (2/4) 
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 Example 2.1.24.  The system defined by 

 

    is called an integrator. Since integration is linear and the 

response to x(t-t0) is 

 

 

 An integrator is LTI 
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Analysis of LTI Systems in the Time 

Domain (3/4) 
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 Example 2.1.25.  Let a linear time-invariant system have 

the impulse response h(t). Assume this system has a complex 

exponential signal as input, i.e., x(t)=A            . The response 

to the input can be obtained by 
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Analysis of LTI Systems in the Time 

Domain (4/4) 
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 The response of an LTI system to the complex exponential 

with frequency f0 is a complex exponential with the same 

frequency. The amplitude of the response can be obtained by 

multiplying the amplitude of the input by |H(f0)|, and its 

phase is obtained by adding ∠H(f0) to the input phase 

 Complex exponentials are called eigenfunctions of the class of 

linear time-invariant systems. The eigenfunctions of a system 

are the set of inputs for which the output is a scaling of the 

input 

 Finding the response of LTI systems to the class of complex 

exponential signals is particularly simple 
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 The basic idea to find the response of an LTI system is to 

expand the input as a linear combination of some basic signals whose 

output can be easily obtained, and then to employ the linearity 

properties of the system to obtain the corresponding output 

 The set of complex exponentials are the eigenfunctions of 

LTI systems 

 The response of an LTI system to a complex exponential is a 

complex exponential with the same frequency with a change 

in amplitude and phase 
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 A periodic signal x(t) with period T0 can be expanded into its 

Fourier series if it meets the following Dirichlet conditions: 

1. x(t) is absolutely integrable over its period, i.e.,  

 

2. The number of maxima and minima of x(t) in each period 

is finite 

3. The number of discontinuities of x(t) in each period is 

finite 

 The Fourier series of x(t) is  
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20 

 The Dirichlet conditions are only sufficient conditions for the 

existence of the Fourier series expansion. For some signals 

that do not satisfy these conditions, we can still find the 

Fourier-series expansion 

 The quantity f0=       is called the fundamental frequency of 

the signal x(t). The nth multiple of f0 is called the nth 

harmonic 

0

1
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 An example discrete spectrum of the periodic signal x(t) 



Fourier Series and Its Properties (5/17) 
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 Example 2.2.1.  Let x(t) is defined by 

                  

 

    Find its Fourier-series expansion. 

    The Fourier-series expansion is 
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 Example 2.2.1. (Cont’d) 



Fourier Series and Its Properties (7/17) 
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 Example 2.2.2.  Determine the Fourier-series expansion for 

the signal x(t) described by 
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 Example 2.2.3. Determine the Fourier-series 

representation of an impulse train denoted by 
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 Example 2.2.3. (Cont’d)  

    We have 

 

 

 

 

 

    With these coefficients, we have the following expansion: 
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and Negative Frequencies (10/17) 
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 The Fourier-series expansion of a periodic signal x(t) is 

expressed as 

 

    

    in which all positive and negative multiples of the 

fundamental frequency 1/T0 are presented. 

 A positive frequency corresponds to a term of the form ejωt. 

A negative frequency corresponds to a term of the form e-jωt 
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Fourier Series and Its Properties – Real 

Signals (12/17) 
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 For real x(t), we have 

 

 

 

 

 

 This means that for real x(t), the positive and negative 

coefficients are conjugates. Hence, |xn| has even symmetry 

and ∠xn has odd symmetry with respect to the n=0 axis 
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 In summary, for real periodic signal x(t), we have three 

alternatives to represent the Fourier-series expansion  
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 If x(t) is both real and even, its Fourier-series expansion has 

only cosine terms, i.e., we have 

 

 

 On the other hand, if x(t) is both real and odd, its Fourier-

series expansion is 
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 Assume that x(t), the input to the LTI system, is periodic 

with period T0 and has a Fourier-series representation 

 

 

    Then we have 

                        y(t)=L   [x(t)] 
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 If the input to an LTI system is periodic with period T0, then 

the output is also periodic. (Hint: Sum of periodic signals is a 

periodic signal) 

 Only the frequency components that are presented at the 

input can be presented at the output. This means that an LTI 

system cannot introduce new frequency components in the output, if 

these components are different from those already present at the input 

 The amount of change in amplitude |H(n/T0)| and phase 

∠H(n/T0) are functions of n 


