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Basic Operations on Signals (1/4)
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Basic Operations on Signals (2/4)
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Basic Operations on Signals (3/4)
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Basic Operations on Signals (4/4)
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Continuous-Time and Discrete-Time
Signhals (1/3)

<

Figure 2.5 Examples of discrete-time and
continuous-time signals.




Continuous-Time and Discrete-Time
Signals (2/3)

* Example 2.1.1 x(t)=Acos(27f,t+0) is an example of a

continuous-time signal called a sinusoidal signal.
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? Figure 2.6 Sinusoidal signal.
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Continuous-Time and Discrete-Time
Signals (3/3)

* Example 2.1.2 x[n]=Acos(27f,;n+0), where n belongs to the

set of integers.
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Real and Complex Signals (1/3)

* A real signal takes its values in the set of real numbers, i.e.,
X(t) er

® A complex signal takes its values in the set of complex
number, i.e., X(t) cC

® A complex signal can be represented by two real signals.
These two real signals can be either the real and imaginary

parts or the absolute value (or modulus or magnitude) and

phase




Real and Complex Signals (2/3)

e Example 2.1.3 The signal x(t)=4e/®W*9 is a complex

signal. Its real part is

X, (t) = Acos(@2rf t + &)
and its imaginary part is

X. (t) = Asin(2xf t + 6).
The absolute value of x() is

| X(8) |= /X2 (1) + X2 (t) = A

and its phase is

ZX(t) = 27t + 6.




Real and Complex Signals (3/3)

* Example 2.1.3 (Cont’d)
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.7 | > complex exponential signal in
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Deterministic and Random Signals

(1/1)

® In a deterministic signal at any time instant ¢, the value of x(r)

is given as a real or a complex number

® In arandom (or stochastic) signal at any given time instant ¢,

x(t) is a random variable. It is defined by a probability density

function




Periodic and Nonperiodic Signals (1/3)

* A periodic signal repeats in time
® The minimum repeating interval is called period
* A periodic signal is a signal x(t) that satisties the property
X+ T,)=x(0)
for all ¢, and some positive real number T, (called the period
of the signal)
® For a discrete-time period signal, we have
x[n+ T,]=x(n]
for all integers n, and a positive integer T, (called the period)

o A signal that does not satisfy the conditions of periodicity is

called nonperiodic
(-




Periodic and Nonperiodic Signals (2/3)

® The signal x(t)=Acos(2mfyt+0) and x(r) =AW+ are
periodic signals with identical period T,=1/f,

® The unit-step Signal

1 t>0
L0 =14 10

is a nonperiodic signal

(1)

t

@ Figure 2.9 The unit-step signal.




Periodic and Nonperiodic Signals (3/3)

* Example 2.1.5 The signal x[n]=Acos(27f;n+0) is not
periodic for all values of f. For this signal to be periodic, we

must have
21f(n+N,)+0=27f;n+0+2mm

for all integers n, some positive integer N, and some integer

m. Thus, we conclude that
21 Ny=2mTT
or

fo=m/N,

® The discrete sinusoidal signal is periodic only for rational

values of f,




Causal and Noncausal Signals (1/2)

* A signal x(t) is called causal if for all <0, we have x(t)=0;

otherwise, the signal is noncausal

e A discrete-time signal is a causal signal if it is identically equal

to zero for n<0




Causal and Noncausal Signals (2/2)

° Example 2.1.6 The signal

t Acos@2Af,t+6), t=>0
X(t) = 0, otherwise

is a causal signal

A
Uy

Figure 2.10 An example of a causal
signal.
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Even and Odd Signals (1/3)

* A signal x(t) is even if it has mirror symmetry with respect to
the vertical axis. A signal is odd if it is symmetric with respect

to the origin

® The signal x(z) is even if and only if, for all ¢,

x(-t)=x(t),
and is odd if and only if, for all ¢,

x(-£)=-x(t)




Even and Odd Signals (2/3)

® In general, any signal x(z) can be written as the sum of its

even and odd parts as

X(D)=x,(0)Fx,(0),

where
X(t) + X(-t)

2

X(t) —x(-t)
2

Xe (t) —

X, (1) =




Even and Odd Signals (3/3)

x(1)

Figure 2.11 Examples of even and
odd signals.
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Hermitian Symmetry for Complex
Signals (1/1)

o A complex signal x(t) is called Hermitian if its real part is

even and its imaginary part is odd

® We can easily show that its magnitude is even and its phase is

odd.

® The signal x(t) =Ae?™0t is an example of a Hermitian Signal




Energy-Type and Power-Type Signals
(1/5)

® This classification deals with the energy content and the
power content of signals. Before classitying these signals, we
need to define the energy content (or simply the energy) and

the power content (or power)

® The energy content of the signal is defined by

I 2 ERT Iz 2
E, =] Ix®F dt=lim [ |x()[" dt
® The power content is defined by

1 2
Po=lim— [ [x(OF dt

® For real signal, |x(r) | is replaced by x°(¢)
(-




Energy-Type and Power-Type Signals
(2/95)

o A signal x(t) is an energy-type Signal if and only it E_is tinite
* A signal x(t) is a power-type signal if and only if 0<P <co
° Example 2.1.9 Find the energy in the signal described by

xa)={3’ It|<3

0, otherwise

We have ;
E, = [ Ix®)F dt= j_3 9dt =54.

This Signal is an energy-type signal




Energy-Type and Power-Type Signals
(3/9)

e Example 2.1.10 The energy content of Acos(27fyr+0) is

T >

E — lim //Azcos (27t + 6)dt = o0

This signal is not an energy-type signal. The power of this

signal is
P, =lim1 _/ A% cos? (274 t + 6)dt
A2
=—< 00
2

: : : Y.
Hence, x(t) is a power-type signal and its power is AT

™~




Energy-Type and Power-Type Signals
(4/5)

* Example 2.1.11 For any periodic signal with period T, the

energy 1S

E — Iimj%|x(t) 2 dt
=|.ij x(t) P dt

:Ilmnj_T(/|x(t)| dt

= 00
Therefore, periodic signals are not energy-type signals




Energy-Type and Power-Type Signals
(9/9)

° Example 2.1.11 (Cont’d) The power content of any

periodic signal is

. 1w 5
P =lim— x(t) | dt
 =lim= [ 1x(0)

] 1 nT%
= lim—— x(t) |° dt

T, /I (t) |

n ¢y

= lim—— t) | dt

lim jW|x<>|

1 T(/
- x(t) [ dt

T WI X(t)

The power content of a periodic Signal is equal to the

average power in one period
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Some Important Signals and Their
Properties (1/18)

e The Sinusoidal Signal. The sinusoidal signal is defined by

X(t) = Acos(2Af t + 6)

where the parameters 4, f;, and 0 are the amplitude,

frequency, and phase of the signal
® The period is T,=1/f,

x(t

)
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Figure 2.6  Sinusoidal signal.




Some Important Signals and Their
Properties (2/18)

* The complex exponential signal. The complex
exponential signal is defined by x(t)=Ae (Tfor+0)

* A, f,, and O are the amplitude, frequency, and phase of the

L
Vi

signal . i

P ; Figure 2.8 Real-imaginary and
| magnitude-phase graphs of the

I | 1l : complex exponential signal in
k -4 =2 0 2 4t | Example 2.1.3.




Some Important Signals and Their
Properties (3/18)

e The Unit—Step Signal. The unit step multiplied by any

signal produces a “causal version” of the signal

* For positive a, we have u_(at)=u_,(t)

Lt‘_sl(l‘) A

—~ ¥

Figure 2.9 The unit-step signal,




Some Important Signals and Their
Properties (4/18)

I(f) A

Figure 2,12 The signal
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u_1()+2u_1(t—1) —u_y(t - 2).




4 N
Some Important Signals and Their

Properties (5/18)

e The Rectangular Pulse. This signal is defined as
1, —i<t<i
I1(t) ={ ’ ’

0, otherwise
IT(2) A
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Figure 2.13 The rectangular pulse.
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Some Important Signals and Their

Properties (6/18)
x (1) 4
2
1h--- ,
]l. é ; 6 / Figure 2.14 The signal
211 (552) - 11 (52).




Some Important Signals and Their
Properties (7/18)

e The Triangular Signal. The signal is defined as

A(t) =5

(t+1 —1<t<0
—t+1 0<t<1

A(2) 4
1

0, otherwise

Figure 2.15 The triangular signal.

/




Some Important Signals and Their
Properties (8/18)
* Example 2.1.14. Plot I1(5) +AG)

x (1) 4

.

Figure 2.16 The signal
() +A(5)

Its plot is shown in Figure 2.15. It is not difficult to verify that?
A(f) = TI() % TI(). (2.1.17)




Some Important Signals and Their
Properties (9/18)

e The Sinc Signals. The sinc signal is defined as

| _{Sin;tﬂt) ,t ¢O
sinc(t) =

1, ,t=0
sinc (r) A
1[\
—6  —4 A2 2 4 6
AT L AN AN
7 Ns N\ 3y [ 1 3\ sV 7

@ Figure 2.17 The sinc signal.




Some Important Signals and Their
Properties (10/18)

e The Sign or the Signum Signal. The sign or the signum

signal is defined as

(1, t>0
sgn(t)=<-1, t<0
10, t=0

e The signum signal can be expressed as the limit of the signal

x (t), which is defined by

(e_%, t>0
xn(t)=<—e%, t<0
0, t=0

when N — o




Some Important Signals and Their
Properties (11/18)
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Some Important Signals and Their
Properties — Properties of 6(t) (12/18)

e The Impulse or Delta Signal. The impulse signal is not a

function (or signal). It is a distribution or a genemh’zed function.

e A distribution is defined in terms of its effect on another

function under the integral sign
® The impulse distribution can be defined by the relation

[~ pms(tydt=¢(0)

 Sometimes it is helpful to visualize O(¢) as the limit of certain

known signals such as

5(t) = lim in(lj

e—>0" g E
and

1. [t
@ §(t):!Lr(r)123|nc(;j
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Some Important Signals and Their

Properties — Properties of 6(t) (13/18)
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@ Figure 2.19 The impulse signal as a limit.




Some Important Signals and Their
Properties — Properties of 6(t) (14/18)

® O0(t)=0 for all t # 0 and 0(0)=c0
* x(t)0(t-t5) =x(t))O(t-1,)

e For any ¢(¢) continuous at ¢,
| #03t-t,)dt = g(t,)
e For any ¢(¢) continuous at ¢,
| pt+t)omdt = t,)

® Forall a# 0,
5(at)=i5(t)
|a

o




Some Important Signals and Their
Properties — Properties of 6(t) (15/18)

® The result of the convolution of any signal with the impulse signal

is the signal itself
x(t) % S(t) = x(t)
x(t) % S(t—t,) = x(t—t,)

* The unit-step signal is the integral of the impulse signal. The

impulse signal is the generalized derivatives of the unit-step Signal

L) = s(z)de

3(0) = U,




Some Important Signals and Their
Properties — Properties of 6(t) (16/18)

® We define the generalized derivatives of 0(t) by

|6 etydt=(-

=0

We can generahze this result to

j sM(t—t,)p(t)dt = (-1)"

t=t,

Hint of proo -
[Hint of proof] | 5(1)(t—t )@(t)dt

= [ gda(t—t,)
45 ), — | St—t,)dg(t)
:_¢(1)(to)




Some Important Signals and Their
Properties — Properties of 6(t) (17/18)

® The result of the convolution of any Signal with nth derivative
of x(¢) is the nth derivative of x(¢)

x(t) 5™ (t) = x™ (t)

[Hint of proof] By mathematical induction,
X(t) J 5 (t)
= [ x(0)s®(t-7)dr
= f; x(7)dS(t —7)

=-x(0)8(t—7)", + [ S(t-7)dx(z)
— x® (t)




Some Important Signals and Their
Properties — Properties of 6(t) (18/18)

® The result of the convolution of any signal x(t) with the unit-

step signal is the integral of the signal x(r)

x(O) deu, ()= x()de

® For even values of n, 8®(¢) is even; for odd values of n, it is

odd

o (1) |

1

! Figure 2.20 The impulse signal.




