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Figure 1.1 Functional diagram of a communication system.
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Figure 1.2 Basic elements of a digital communication system.
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® The beginnings of what we now regard as modern digital

communications stem from the work of Nyquist (1924)

* Nyquist investigated the problem of determining the
maximum signaling rate that can be used over a telegraph
channel of a given bandwidth without intersymbol

interference

* Nyquist formulated a model of a telegraph system in which a

transmitted signal has the form

s(t) =Y, a,g(t-nT)
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* Nyquist set out to determine the optimum pulse shape that
was bandlimited to W Hz and maximized the bitrate 1/ T
under the constraint that the pulse caused no intersymbol

interference at the sampling times k/ T, k=0, 1, %2....

* Nyquist concluded that the maximum pulse rate 1/ Tis 2W
pulses/ sec. This rate is now called the Nyquist rate.

Moreover, this pulse rate can be achieved by using the pulses
g(t)=(sin2 TWt/2 TTWt)
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® The sampling theorem states that a signal of bandwidth W can
be reconstructed from samples taken at the Nyquist rate of

2W sarnples/ sec using the interpolation formula

B n \sin2z2W({t—-n/2W)
S(t)_znls(zvvj 27N (t—n/2W)

e Shannon established basic limits on communication of
information and gave birth to a new field that is now called

information theory
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® The channel capacity of an additive white Gaussian noise

(AWGN) channel can be related as

P
C=Wlog,|1+——
WN0
® Pis the average transmitted power and N, is the power-

spectral density of the additive noise

® If the information rate R from the source is less than C (R<C),
then it is theoretically possible to achieve reliable (error-free)

transmission through the channel by appropriate coding
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* If R>C, reliable transmission is not possible regardless of the
amount of signal processing performed at the transmitter and

receiver
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® Ground-wave propagation, illustrated in Fig. 1.5, is the
dominant mode of propagation for frequencies in the MF

band (0.3-3 MHz). This is the frequency band used for AM

broadcasting and maritime radio broadcasting.

* Atmospheric noise, man-made noise, and thermal noise from
electronic components at the receiver are dominant

disturbances for signal transmission at MF
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o Sky—wave ionospheric propagation ceases to exist at

frequencies above approximately 30 MHz, which is the end
of the HF band
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Figure 1.6 Illustration of sky-wave
propagation.
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® The dominant noise limiting the performance of
communication systems in the VHF and UHF frequency
ranges is thermal noise generated in the front end of the

receiver and cosmic noise picked up by the antenna

* At frequencies above 10 GHz in the SHF band, atmospheric

conditions piay a major role in signal propagation
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e The Additive Noise Channel. The simplest mathematical
model for a communication channel is the additive noise

channel

® The additive noise process may arise from electronic
components and amplifiers at the receiver of the
communication system, or from interference encountered in

transmission

Channel

s (2) ) = r() = s() + n(r)

Figure 1.7 The additive noise channel.
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® When the signal undergoes attenuation in transmission

through the channel, the received signal is

r(t)=as(t)+n(t)

where a represents the attenuation factor
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® The Linear Filter Channel. If the channel input is the
signal s(t), the channel output is the signal

r(t)=s(t) % h(t)+n()
where h(z) is the impulse response of the linear filter and Y

denotes convolution
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() Figure 1.8 The linear filter
K g e o e e e e 0 channel with additive noise.
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® The Linear Time-Variant Filter Channel. The filter
coefficient is time-variant. Such linear filters are
characterized by the time-variant channel impulse response
h(T;t), where h(T;t) is the response of the channel at time ¢

and T represents the “age” (elapsed time) variable
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Figure 1.9 Linear time-variant filter channel with additive noise




