
This section may be omitted without upsetting the continuity of our discussion of
wave mechanics; however, a detailed understanding of the solution for a physically
more realistic potential will be helpful in future discussions. Let us first shift
the V(x) and x axes so as to arrange the potential symmetrically about x � 0
with the walls at �a as shown in Figure 6-8(b). The purpose is to enable us to sim-
plify the mathematics a bit. As before, we will only be concerned with energies
inside the well, i.e., 0 � E � V0.

Equation 6-33 is the Schrödinger equation for 
a � x � �a, where V(x) � V0,
and its general solution is

6-36

where B1 and B2 are constants. The condition that �(x) : 0 as x : 
� means that
B2 � 0 for x � 
a. Similarly, B1 � 0 for x � �a, and we conclude that

6-37a

6-37b

Equation 6-26 is the Schrödinger equation for 
a � x � �a, where V(x) � 0,
and its general solution, we have already noted, is

6-38

where A1 and A2 are constants. In contrast with the infinite square well, however, we
cannot eliminate either the sine or cosine functions by requiring that they be zero at
the boundaries of the well because the boundaries are not infinitely high. However,
because of their particular symmetry (cosine is even, sine is odd), we can consider
them separately with the symmetric arrangement that was chosen for V(x).

Equations 6-37 and 6-38 are all continuous functions with continuous first deriv-
atives; therefore, the complete �(x) and ��(x) for the finite square well will also be
continuous, as required by the acceptability conditions, if they are also continuous at
x � 
a and x � �a. How do we ensure continuity at those two points? Let us con-
sider first the even solution in the well, �(x) � A2 cos kx.

�(x) � A1 sin kx � A2 cos kx

�(x) � B2e�x  x � �a

�(x) � B1e�x  x � 
a

�(x) � B1e�x � B2e
�x
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Graphical Solution of the Finite Square Well

For x � �a:

6-39a

6-39b

For x � 
a:

6-40a

6-40b

We note immediately that B1 � B2, which the symmetry of the potential might also
have suggested to us. Combining Equations 6-39 and 6-40, we have

or

6-41

Substituting values of k and � from above, Equation 6-41 can also be written as

6-42

Considering the odd solutions in the well, �(x) � A1 sin kx, an equivalent discussion
leads to the condition that

6-43

Though tedious to solve analytically, the solutions to these transcendental equations
can be readily found graphically. The solutions are those points where the graphs of
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Fig. 6-14 Graphical solu-
tions of Equations 6-41 and
6-43. Two different curves of
�/k are shown, each corre-
sponding to a different value
of V0. The value of V0 in each
case is given by the value of
ka where �/k � 0, indicated
by the small arrows. For
example, the top �/k curve
has �/k � 0 for ka � 2.75�,
or .
Allowed values of E are those
given by the values of ka
at the intersections of the
�/k and tan ka and �/k and

cot ka curves.
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tan ka and 
cot ka have values in common with �/k. Figure 6-14 illustrates the
graphical solution. The tan ka and 
cot ka are both graphed versus ka. They, of
course, are just the curves of tan � versus � and the negative of the curves of cot �
versus � that you first saw in trigonometry. The “angle” ka contains both the parti-
cle’s energy E and the half width of the well a; thus the ka axis is the energy axis.
The value of �/k is also graphed against ka. The point where the �/k curve intersects
the ka (energy) axis is the point where E � V0; i.e., it corresponds to the top of the
well. Some features of the finite square well solutions are worth noting:

1. As the well gets deeper— i.e., as the point where �/k � 0 moves to the right
in Figure 6-14—a new quantized energy and solution appear each time the
point where �/k � 0 reaches an integer multiple of �/2. The solution intersec-
tions move up the tan and 
cot curves with ka : n�/2, as for the infinite
square well.

2. As the well gets more shallow— i.e., as the point where �/k � 0 moves to the
left in Figure 6-14—a solution is lost out of the top of the well each time that
point passes an integer multiple of �/2. Note that there is always at least one
quantized energy in the well no matter how shallow it gets, as long as V0 � 0.

Obtaining the values of the constants in the general expressions for V(x) is not partic-
ularly useful for our purposes here, since we have already found the general form of
the wave functions for the finite square well. (See Figure 6-12, noting that L � 2a
there.) Using the graphical technique outlined, you can now construct energy-level
diagrams for finite square wells.


