Frequency-Band Broadening of Microstrip Patch Antennas

Wen Xun ZHANG

State Key Laboratory of Millimeter Waves Southeast University Nanjing, Jiangsu 210096, CHINA wxzhang@ieee.org

Preface ⁸

BroadBand Principle 5

Broadband Design 8- Double-layer

Broadband Design 15 – Single-layer

Conclusion ³

Preface-8

Antennas ⇒ Printed Antennas ⇒ Microstrip Patch (MSP) Antennas

BroadBand Principle

BroadBand Design

Conclusion

Preface₁ --- Trends of Wireless Systems with Antennas

Systems

Antennas

- Miniaturization Meandering
 --- Portable
 Folded
- Integration
 --- System on chip
- Active LTCC

Higher ε_r

Printed Technology

- Multi-function → Multi-band
 Broad Bandwidth Dual-polarized
- Intelligentizing
 --- Pushbutton-type

Adaptive Smart MIMO

Preface₃ ---- Structure Types of Printed Antennas

Plate dipole Wire Structure Meander-line Spiral Microstrip patch Patch Structure Tapered slot-line Co-planar waveguide **Patch antennas** Microstrip patch Array Structure Strip grating (dipoles) with elements Frequency Selective surface Fresnel zone plate **Aperture Structure** Reflectarray Transmitarray elements

Preface₃ ---- Structure Samples of Printed Antennas

Preface₄ ---- Historic Locus of Printed Antennas

Practical Microstrip Ant. (72)

Strip-line (51) 1950s Embryo Micro-strip Line (52) Microstrip Antenna (53) Plate Antenna (55)

1960s <u>Pregnancy</u> *Microstrip Circuits (MIC)*

Conformal Phased Array (74) 1970s Baby Special Conference in N. M. (79) Vivaldi Antenna & TSA (74, 79) Frequency-Selective Surface (73) *Great Number of Papers (10^{2~3})* 1980s Growth Many Monographs & Books(4+) Various Applications (BW? η_A ?) More Papers (10^{3~4}) More Monographs & Books(6+) **1990s** Flourish Wide Applications (array tech.) Fresnel Zone Plate Antenna (91) Reflectarray Antenna (91)

2000s <u>Tiller</u>

Structural Type Function & Performance Application Feature

Preface₆ ---- Eight Diagram of MPA

Preface⁷ ---- Feeding Structure of MSA

Туре	Direct	Probe	Side	Proximity	Apérture
Architecture (feeding)	Co-planar ending	Isolated by ground plate	Co-planar passing	Quasi Co-planar	Isolated by ground plate
Excitation (<i>mechanism</i>)	🖛 Lum	ped	polarity)	Distributed	
Feeding (structure)	Conta (Nonline	acted> er junction)		Un-contacte	d
Connector (input-port)	Transition	Direct coaxial line		Transition Direct netw	or orking
Adjustment (mechanically)		Impossible		Pc	ossible ————————————————————————————————————
Thickness (relatively)	Thin	3-D	Thin		Thick ————————————————————————————————————
Fabrication (technology)	Printed	Mechanical	Printed	Printe	ed / stacked 🗪
Performances (relatively)	Wit con	General	Only for traveling wave array	Broader band	Broader band Higher gain Better pattern

Preface⁸ ---- General Design Flow-Chart

Preface

BroadBand Principle₋₅

Four ways ⇒ Techniques

BroadBand Design

Conclusion

BroadBand Principle1 ---- Low 'Q'

Specification of Frequency Bandwidth

 The Common Bandwidth of :
 Most important

 Impedance Matching ----- for Narrow-band case

 Directive Gain
 for Broad-band case

 Polarization parameters
 for Broad-band case

Principle 1. < To reduce the Quality Factor "Q">

<pre>loss ∝1/efficiency ⇒efficiency ↓; radiation ∝ volume 1.</pre>		
Restricted by		
Dominate mode resonance condition		
Surface wave exciting/Probe radiating		
Elements spacing in array		
Coupling effectiveness		

Band Broadening₂ ---- Suppress S-W

Principle 2. < To suppress the surface-waves>

Surface-wave *is excited by* inner-reflection inside dielectric

Surface-wave results inEdge diffraction
Parasitic couplingand thendisturbsMatching
RadiationpropertiesSurface-wave may be suppressed byAir-gap/Foam substrate
Decreasing (ε, t)
Cavity-backed
Conductive fence
EBG structure

Band Broadening₃ ---- Multi-resonance

Principle 3. <a>To form multiple resonant response>

Frequency-response Synthesis techniques:

* Exciting multi-mode in the cavity ----- by loading conducting post(s)

- * Adjusting the configuration of patch ----- adopting ridge(s) / notch(es) structure
- * Utilizing parasitic patches

----- using co-planar bar(s) / stacked patch(es)

Band Broadening ---- Input-Matching **Principle 4.** < To match the input-impedance> * Control the patch impedance by internal-loading Shaped Slotted Shorted * Adjust the feed terminal by excitation-form Inlaid-chock for strip Disc-coupled probe *Slot-coupled probe* * Insert the matching network into feed-line By means of Broadband-matching techniques employing 'Branch & Stub'

Band Broadening₅ ---- Summary

 $BW\% = \Delta f / f_0 \quad \text{for both} \quad \begin{cases} VSWR \le 2.0:1 \ , \ 1.5:1 \ , \ 1.2:1 \\ Pattern \sim Gain \ , \ X-polar \end{cases}$

Bl	N Technique	Feature	Problem	
<5%	.Low \mathcal{E}_{r} - thick substrate	Foam /air-suspended	limited effect	
	Larger width / length	(for)	higher-mode limitation	
10%	.Comparison in geometry		pattern parameters	
20%	.Probe compensation	Series resonance	auxiliary effect	
20%	.Co-planar bars	Parasitic	limited size	
	Stacked patches (SSFIP)	Parasitic	structure & cost	
	.Slotted patch (U - type)	Coincide	pattern parameters	
>40%	.L-probe patch	Distributed feeding	Structural stability	
	.Compound Tech.			
(<i>E-pa</i>	U-slotted patch htch, H-slotted patch, H-patch, •	···)	n ^v ert ^{ed} ,	

Contents

Preface

Band Broadening

Design Examples-8 --- Double-layer

Probe-fed patch --- Compound stacked **Dual-polarized patch** --- SSFIP **Dual-polarized patch** --- Aperture Coupled

Conclusion

Design Examples--Double-layer Patch 1

I. Probe-fed Compound StackedPatch -----*BW* ≈ 21 % in *L-band* : *VSWR* ≤ 2.0:1 (50 Ω) *same HPBW_E* (≈ 52 °), *at 1.4* GHz : *SLL*< -21dB, *X-P* < -20dB.

 II. Dual-polarized SSFIP ----- element (array)

 $BW \approx 8 \%$ in L-band : $VSWR \le 2.0 (1.4) :1 (50 \Omega)$; I = -48 (-29) dB,

 $at f_0$: $HPBW \approx 52^\circ$; $SLL \le -21 dB$; $X-P \le -28 dB$.

III. Dual-polarized Aperture-coupled Patch -----BW ≈ 22.1 (14.2)% in *X-band* : *VSWR* ≤ 2.0 (1.3) :1 (50 Ω) ; *I* = -34.6 (-35)dB.

I. Probe-fed Compound Stacked Patch

Compound Techniques:

- * Two pairs of parasitic bars surrounding the feeding patch
- * A stacked parasitic patch with offset by the current axis
- * A capacitive disc loading a probe fed by coaxial-line

Performances:

* $BW \approx 21\%$ at L-Band: $VSWR \leq 2:1$ with same E-plane patterns

* at 1.4GHz : HPBW \approx 52 ° SLL < -21 dBX-Polar< -20 dB

For solid-state active phased array

II. Dual-Polarized SSFIP

3

II. Dual-Polarized SSFIP

4

II. Dual-Polarized SSFIP

PerformancesWith 7.9 % Bandwidth for $VSWR \le 2.0:1$ Isolation $\le -48 \ dB$ Cross-Polar $\le -28 \ dB$

Antenna	Element with two ports			Array of 6 elements		
Frequency (GHz)	1.71	1.78	1.85	1.71	1.78	1.85
Gain (dBi)	8.2	9.0	9.3	15.2	15.5	15.8
X-Polar (dB)	-28	-33	-37	-28	-38	-31
VSWR (Port I) (Port II)	1.9 1.7	1.2 1.35	1.3 1.2	1.32 1.34	1.32 1.31	1.31 1.39
Isolation (dB) (Ports & II)	-48	-48	-50	-30	-37	-29

III. Dual-polarized Aperture-coupled Patch

Matching

22.1 % Bandwidth for VSWR≤ 2.0:1 14.2 % Bandwidth for VSWR≤ 1.3:1

III. Dual-polarized Aperture-coupled Patch

Preface

Band Broadening

DesignExamples₋₁₅ --- Single-layer

U-slotted patch --- Aperture coupled Dual-band patch --- GSM+DCS EBG-backed spiral --- Thin profile

Conclusion

Design Examples -- Single-layer Patch 1

IV. Aperture-coupled U-slotted Patch -----

 $\begin{cases} BW \approx 40 \ \% \ in \ S, \ Ku\ band \ , \quad VSWR \leq 2.0:1 \ (50 \ \Omega) \\ BW \approx 30 \ \% \ in \ Ku\ band \ , \quad \Delta G \leq -3 \ dB, \quad X\ -P \leq -18 \ dB \ . \end{cases}$

V. Dual-band single-layer Patch-----

 $BW \approx \frac{37\% \text{ for } DCS1800}{9.3\% \text{ for } GSM900}$, $VSWR \le 2.0:1 (50 \Omega), I = -15 \text{ dB};$ $G \ge \frac{5.6 \text{ dBi}}{10.2 \text{ dBi}}$; $HPBW \approx \frac{107^{\circ}}{58^{\circ}}$

VI. PBG-backed Spiral----- Relative to Spiral with PEC plate $BW\% \times 1.23 \Rightarrow 65\%$ in X/Ku-bands, $VSWR \leq 2.0:1$ $(50 \Omega throughout Balun)$ *HPBW is same* ($\approx 90^{\circ}$), $G_{dB} + 1.3 \text{ dB}$, (*F/B*)_{dB} +8.9 dB.

@L-Probe proximity-fed U-slotted Patch-(Luk) ₃

From K.M. Luk et al. Electronic Letters(1998) 34(19) 1806-1807

@If Aperture-coupled U-slotted Patch exists?

Aperture-coupling separates Radiator & feed by ground plate

- * Structure complanation ~ especially for array with feed network
- * Interaction avoidance ~ isolation between radiation & transmission
- * Design rationalization ~ using lower & higher *&* substrates respectively

Aperture-coupling had been widely applied to patch antennas * Suitable for different kinds of patch antennas !

- * Obvious merit to achieve impedance matching in a wideband !
- * Why have not performed after the original (1995) paper until to 1999?

* Be locked into a closed concept of capacitive impedance at excited point ?!

@ Comparing lumped & distributed coupling

To perform a *Inductance* by shorter coupling-slot ? ----- *Failed* !

5

IV. П-slot fed U-slotted Patch

Matching

8

Frequency response of slot-fed U-slotted patch antenna

$$\frac{40\%}{26\%} Bandwidth for VSWR \le \frac{2.0:1}{1.5:1} (50\Omega) in Ku-Band$$

IV. П-slot fed U-slotted Patch

Pattern

9

V. Dual-band Single-layer Patch

Structure 11

V. Dual-band Single-layer Patch

Patterns

12

V. Dual-band Single-layer Patch

Data

13

GSM: 890~960MHz	GSM900	GSM900	DCS1800+	DCS1800+
DCS: 1710~1880MHz	Simulation	Measured	Simulation	Measured
Frequency range (MHz)	881-964	885-966	1550-2280	1560-2269
Bandwidth (VSWR≤ 2:1)	9.22 %	9.00 %	40.56 %	39.38 %
Gain	10.4 dBi	9.8 dBi	5.94 dBi	6.15 dBi
3dB Beamwidth (H-plane) (E-plane)		59.6° 56.4°	106.0° 70.0°	108.8° 73.2°
Cross-polar (45°-plane)	-21.0 dB	-18.3 dB	-13.0 dB	-13.8 dB
Isolation		>16.5 dB		>15.3 dB

Multi-band & Multi-function Applicable

(885~966) MHz covers:	GSM (890~960) MHz
(1560-2269) MHz covers:	GPS 1658 MHz DCS (1710~1880) MHz IMT-2000 (1850~1990) MHz (2110~2200) MHz PHS: (1900~1920) MHz UMTS: (1920~2170) MHz

VI. Circular-Polarized Spiral backed on EBG 14 Structure **Spiral radiator: EBG** material: spiral radiator feed network Assembly Feature in performance Feature for EMW propagation Wide-band ~ **Band-gap material** ~ depending on Max & Min radii suppress Surface-wave in stop-band Wideband Circular-polar ~ Gain enhancement ~ natural and angle-independent **CPW Balun:** reduce loss & focus effect Lower gain ~ Thinning structure ~ similar as one-wavelength loop employ printed CPW-balun Trouble in structure **Problem in development** 'Ground screen ~ 'High quality dielectric ~ for uni-directive radiation with high permittivity & low-loss Long balun ~ Wideband EBG material ~ for unbalanced feed angle/polar independent stop-band Lower efficiency ~ Lower efficiency ~ for reflection absorber precision in mechanical processing Patent

VI. Circular-Polarized Spiral backed on EBG 15

Performances

VSWR response

Radiation pattern

<u>Compare to</u> that *backed on a ground plate* with the same sizes and $\lambda/4$ apart -----

Bandwidth expends × 1.23 → 65 % Gain enhancement + 1.3 dB Front/Back ratio + 8.9 dB

Preface

BroadBand Principle

BroadBand Design

Conclusion-3

Conclusion

* **Printed antennas play important roles in various modern wireless systems.**

* Microstrip patch antennas play major roles in the family of printed antennas.

* The main shortcoming of narrow-band for patch antenna has been relieved by means of *multi-resonance techniques*.

* The band broadening for *compact patch* or *array of patches* is still a great challenge.

* Another rigorous challenge is to perform an *ultra-wide-band* compact patch antenna.

Monographs & Books (I)

Microstrip Antennas (General)

< Microstrip Antennas > I.J. Bahl & P. Bhartia, (1980) Artech House, Inc. (译).
< Microstrip Antenna-----Theory and Design > J.R. James, P,S. Hall & C. Wood, (1981) Peter Peregrinus Ltd.

< Flat Radiating Dipoles and Applications to arrays > G. Dubost, (1981) Research Studies Press Ltd.

<微带天线理论与工程 > 张钧、刘克成、张贤铎、赫崇骏,(1988) 国防工业出版社. < Handbook of Microstrip Antennas > J.R. James & P.S.Hall, (1989) Peter Peregrinus Ltd. <微带天线理论与应用 > 钟顺时, (1991) 西安电子科技大学出版社.

< Millimeter-wave Microstrip and Printed Circuit Antennas >
 P. Bhartia, K.V.S. Rao & R.S. Tomar, (1991) Artech House, Inc. (译). < Analysis, Design, and Measurement of small and Low-profile Antennas >
 Ed. by *K. Hirasawa & M. Haneishi , (1992) Artech House, Inc. (译).*

< Microstrip Antennas-----The Analysis and Design of Microstrip Antennas and Arrays > Ed. By *D.M. Pozar & D.H. Schaubert* , (1995) IEEE Press.

Monographs & Books (II)

Microstrip Antennas (Modern)

- < Broadband Patch Antennas > J.-F. Zurcher & F.E. Gardiol, (1995) Artech House, Inc.
- < CAD of Microstrip Antennas for Wireless Applications > R.A.Sainati , (1996) Artech House, Inc.
 < Advances in Microstrip and Printed Antennas > Ed. By K.F. Lee & W. Chen , (1997) John Wiley & Sons, Inc.
- < Design of Nonplanar Microstrip Antennas and Transmission Lines > K.-L. Wong, (1999) John Wiley & Sons, Inc.
- < Microstrip Antenna Design Handbook > R.Garg, P. Bhartia & I. Bahl , (2001) Artech House, Inc.
- < Compact and Broadband Microstrip Antennas > K.-L. Wong, (2002) John Wiley & Sons, Inc.
- < Broadband Microstrip Antennas > G. Kumar, K.P. Ray (2006) Artech House, Inc.

THE END

Thanks!